GPUPEGAS: A NEW GPU-ACCELERATED HYDRODYNAMIC CODE FOR NUMERICAL SIMULATIONS OF INTERACTING GALAXIES

被引:29
|
作者
Kulikov, Igor [1 ]
机构
[1] Inst Computat Math & Math Geophys SB RAS, Novosibirsk 630090, Russia
来源
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES | 2014年 / 214卷 / 01期
关键词
galaxies: interactions; gravitation; hydrodynamics; methods: numerical; SMOOTHED PARTICLE HYDRODYNAMICS; ADAPTIVE-MESH-REFINEMENT; GAS; COSMOLOGY; EQUATIONS;
D O I
10.1088/0067-0049/214/1/12
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, a new scalable hydrodynamic code, GPUPEGAS (GPU-accelerated Performance Gas Astrophysical Simulation), for the simulation of interacting galaxies is proposed. The details of a parallel numerical method co-design are described. A speed-up of 55 times was obtained within a single GPU accelerator. The use of 60 GPU accelerators resulted in 96% parallel efficiency. A collisionless hydrodynamic approach has been used for modeling of stars and dark matter. The scalability of the GPUPEGAS code is shown.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] GPU-Accelerated Monte Carlo Simulations of Dense Stellar Systems
    Pattabiraman, B.
    Umbreit, S.
    Liao, W.
    Rasio, F.
    Kalogera, V.
    Choudhary, A.
    ADVANCES IN COMPUTATIONAL ASTROPHYSICS: METHODS, TOOLS AND OUTCOMES, 2012, 453 : 329 - 332
  • [22] Evaluation of the computational efficacy in GPU-accelerated simulations of spiking neurons
    Fujita, Kazuhisa
    Okuno, Shun
    Kashimori, Yoshiki
    COMPUTING, 2018, 100 (09) : 907 - 926
  • [23] A GPU-Accelerated Two-Dimensional Hydrodynamic Model for Unstructured Grids
    Peng, Feng
    Hao, Xiaoli
    Chai, Fuxin
    WATER, 2023, 15 (07)
  • [24] cuFFS: A GPU-accelerated code for Fast Faraday rotation measure Synthesis
    Sridhar, S. S.
    Heald, G.
    van der Hulst, J. M.
    ASTRONOMY AND COMPUTING, 2018, 25 : 205 - 212
  • [25] Domain decomposition in the GPU-accelerated Shift Monte Carlo code q
    Hamilton, Steven P.
    Evans, Thomas M.
    Royston, Katherine E.
    Biondo, Elliott D.
    ANNALS OF NUCLEAR ENERGY, 2022, 166
  • [26] A GPU-Accelerated Modern Fortran Version of the ECHO Code for Relativistic Magnetohydrodynamics
    Del Zanna, Luca
    Landi, Simone
    Serafini, Lorenzo
    Bugli, Matteo
    Papini, Emanuele
    FLUIDS, 2024, 9 (01)
  • [27] GPU-accelerated direct numerical simulations of decaying compressible turbulence employing a GKM-based solver
    Parashar, Nishant
    Srinivasan, Balaji
    Sinha, Sawan Suman
    Agarwal, Manish
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2017, 83 (10) : 737 - 754
  • [28] An Automated Tool for Analysis and Tuning of GPU-Accelerated Code in HPC Applications
    Zhou, Keren
    Meng, Xiaozhu
    Sai, Ryuichi
    Grubisic, Dejan
    Mellor-Crummey, John
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (04) : 854 - 865
  • [29] GPU-Accelerated Discrete Event Simulations: Towards Industry 4.0 Manufacturing
    Faheem, Moustafa
    Murphy, Adrian
    Reano, Carlos
    26TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2021), 2021,
  • [30] GPU-accelerated simulations of mass-action kinetics models with cupSODA
    Nobile, Marco S.
    Cazzaniga, Paolo
    Besozzi, Daniela
    Mauri, Giancarlo
    JOURNAL OF SUPERCOMPUTING, 2014, 69 (01): : 17 - 24