Factoring N = prqs for Large r and s

被引:10
|
作者
Coron, Jean-Sebastien [1 ]
Faugere, Jean-Charles [2 ,3 ,4 ]
Renault, Guenael [2 ,3 ,4 ]
Zeitoun, Rina [5 ]
机构
[1] Univ Luxembourg, Luxembourg, Luxembourg
[2] Ctr Paris Rocquencourt, POLSYS, INRIA, F-78153 Le Chesnay, France
[3] Univ Paris 06, Univ Sorbonne, LIP6, Equipe POLSYS, F-75005 Paris, France
[4] UPMC, LIP6, CNRS, UMR 7606, F-75005 Paris, France
[5] Oberthur Technol, 420 Rue Estienne Orves,CS 40008, F-92705 Colombes, France
来源
关键词
FINDING SMALL ROOTS; RSA; CRYPTANALYSIS; ALGORITHM; EQUATIONS; EXPONENT; KEY;
D O I
10.1007/978-3-319-29485-8_26
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Boneh et al. showed at Crypto 99 that moduli of the form N = p(r)q can be factored in polynomial time when r similar or equal to log p. Their algorithm is based on Coppersmith's technique for finding small roots of polynomial equations. In this paper we show that N = p(r)q(s) can also be factored in polynomial time when r or s is at least (log p)(3); therefore we identify a new class of integers that can be efficiently factored. We also generalize our algorithm to moduli with k prime factors N = Pi(k)(i=1) p(i)(ri); we show that a non-trivial factor of N can be extracted in polynomial-time if one of the exponents r(i) is large enough.
引用
收藏
页码:448 / 464
页数:17
相关论文
共 50 条
  • [31] The large, the small, and the human mind - Penrose,R, Shimony,A, Cartwright,N, Hawking,S
    Plotnitsky, A
    POSTMODERN CULTURE, 1997, 7 (03): : 49 - 62
  • [32] Factoring n and the Number of Points of Kummer Hypersurfaces mod n
    Drylo, Robert
    Pomykala, Jacek
    NUMBER-THEORETIC METHODS IN CRYPTOLOGY, 2018, 10737 : 163 - 177
  • [33] Factoring a Multiprime Modulus N with Random Bits
    Terada, Routo
    Villena, Reynaldo Caceres
    INFORMATION SECURITY (ISC 2013), 2015, 7807 : 185 - 196
  • [34] FACTORING WITH S1 - REPLY
    LEINING, RB
    BYTE, 1985, 10 (06): : 30 - &
  • [35] THE COMPLETION OF EULER'S FACTORING FORMULA
    Blecksmith, Richard
    Brillhart, John
    Decaro, Michael
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (03) : 755 - 762
  • [36] A Note on Euler's Factoring Problem
    Brillhart, John
    AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (10): : 928 - 931
  • [37] Shor's Algorithm for Quantum Factoring
    Nene, Manisha J.
    Upadhyay, Gaurav
    ADVANCED COMPUTING AND COMMUNICATION TECHNOLOGIES, 2016, 452 : 325 - 331
  • [38] Speeding Fermat's factoring method
    Mckee, J
    MATHEMATICS OF COMPUTATION, 1999, 68 (228) : 1729 - 1737
  • [39] Factoring large numbers with the TWINKLE device (Extended abstract)
    Shamir, A
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS, 1999, 1717 : 2 - 12
  • [40] S?n?r Sosyolojisi Perspektifinden Theo Angelopoulos'un "S?n?r Uclemesi"
    Tekin, Ferhat
    INSAN & TOPLUM-THE JOURNAL OF HUMANITY & SOCIETY, 2023, 13 (03): : 57 - 80