Evolutionary Optimization on Artificial Neural Networks for Predicting the User's Future Semantic Location

被引:4
|
作者
Karatzoglou, Antonios [1 ]
机构
[1] Robert Bosch, Advance Engn, Chassis Syst Control, Abstatt, Germany
关键词
Evolutionary algorithms; Artificial Neural Networks; Semantic trajectories; Semantic location prediction; MOBILITY PREDICTION; KNOWLEDGE;
D O I
10.1007/978-3-030-20257-6_32
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Location prediction has gained enormously in importance in the recent years. For this reason, there exists a great variety of research work carried out at both the academia and the industry. At the same time, there is an increasing trend towards utilizing additional semantic information aiming at building more accurate algorithms. Existing location prediction approaches rely mostly on data-driven models, such as Hidden Markov Chains, Bayes Networks and Artificial Neural Networks (ANN), with the latter achieving usually the best results. Most ANN-based solutions apply Grid Parameter Search and Stochastic Gradient Descent for training their models, that is, for identifying the optimal structure and weights of the network. In this work, motivated by the promising results of genetic algorithms in optimizing neural networks in temporal sequence learning areas, such as the gene and the stock price index prediction, we propose and evaluate their use in optimizing our ANN-based semantic location prediction model. It can be shown that evolutionary algorithms can lead to a significant improvement with respect to its predictive performance, as well as to the time needed for the model's optimization.
引用
收藏
页码:379 / 390
页数:12
相关论文
共 50 条
  • [31] Structure optimization of neural networks for evolutionary design optimization
    M. Hüsken
    Y. Jin
    B. Sendhoff
    Soft Computing, 2005, 9 : 21 - 28
  • [32] Fall Detection Using Accelerometer on the User's Wrist and Artificial Neural Networks
    Urresty Sanchez, Javier Alexis
    Munoz, Daniel M.
    XXVI BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2018, VOL 1, 2019, 70 (01): : 641 - 647
  • [33] Training Optimization for Artificial Neural Networks
    Toribio Luna, Primitivo
    Alejo Eleuterio, Roberto
    Valdovinos Rosas, Rosa Maria
    Rodriguez Mendez, Benjamin Gonzalo
    CIENCIA ERGO-SUM, 2010, 17 (03) : 313 - 317
  • [34] Noise Optimization in Artificial Neural Networks
    Xiao, Li
    Zhang, Zeliang
    Jiang, Jinyang
    Peng, Yijie
    2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 1595 - 1600
  • [35] Noise Optimization in Artificial Neural Networks
    Xiao, Li
    Zhang, Zeliang
    Huang, Kuihua
    Jiang, Jinyang
    Peng, Yijie
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 2780 - 2793
  • [36] Noise Optimization in Artificial Neural Networks
    Xiao, Li
    Zhang, Zeliang
    Huang, Kuihua
    Jiang, Jinyang
    Peng, Yijie
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 2780 - 2793
  • [37] Artificial neural networks in radiotherapy optimization
    Gulliford, S
    RADIOTHERAPY AND ONCOLOGY, 2005, 76 : S53 - S53
  • [38] PREDICTING HAZ HARDNESS WITH ARTIFICIAL NEURAL NETWORKS
    CHAN, B
    BIBBY, M
    HOLTZ, N
    CANADIAN METALLURGICAL QUARTERLY, 1995, 34 (04) : 353 - 356
  • [39] Predicting Consumer Behavior with Artificial Neural Networks
    Badea , Laura Maria
    EMERGING MARKETS QUERIES IN FINANCE AND BUSINESS (EMQ 2013), 2014, 15 : 238 - 246
  • [40] Predicting population fluctuations with artificial neural networks
    Lindstrom, Jan
    Kokko, Hanna
    Ranta, Esa
    Linden, Harto
    WILDLIFE BIOLOGY, 1998, 4 (01) : 47 - 53