Nonlinear Inverse-Scattering in Variable-Exponent Spaces for Multifrequency Subsurface Imaging

被引:0
|
作者
Fedeli, Alessandro [1 ]
Schenone, Valentina [1 ]
Estatico, Claudio [2 ]
Pastorino, Matteo [1 ]
Randazzo, Andrea [1 ]
机构
[1] Univ Genoa, Dept Elect Elect Telecommun Engn & Naval Architec, Genoa, Italy
[2] Univ Genoa, Dept Math, Genoa, Italy
关键词
Inverse scattering; Lebesgue spaces; Subsurface imaging; INEXACT-NEWTON METHOD; GPR; LEBESGUE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a subsurface imaging configuration is considered, with the goal of retrieving the quantitative dielectric properties of buried targets from scattered electric field measurements performed by a set of antennas above the soil. The acquired scattered-field data are processed by a nonlinear inverse-scattering approach in variable-exponent Lebesgue spaces able to jointly exploit multifrequency data, which is extended here for the first time to subsurface imaging problems. Numerical simulations are presented as a preliminary assessment of the proposed inverse-scattering technique, where a multistatic ground penetrating radar configuration is adopted.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Variable-Exponent Lebesgue-Space Inversion for Brain Stroke Microwave Imaging
    Bisio, Igor
    Estatico, Claudio
    Fedeli, Alessandro
    Lavagetto, Fabio
    Pastorino, Matteo
    Randazzo, Andrea
    Sciarrone, Andrea
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2020, 68 (05) : 1882 - 1895
  • [22] A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities
    Messaoudi, Salim A.
    Talahmeh, Ala A.
    APPLICABLE ANALYSIS, 2017, 96 (09) : 1509 - 1515
  • [23] On Singular Operators in Vanishing Generalized Variable-Exponent Morrey Spaces and Applications to Bergman-Type Spaces
    Karapetyants, A. N.
    Rafeiro, H.
    Samko, S. G.
    MATHEMATICAL NOTES, 2019, 106 (5-6) : 727 - 739
  • [24] Existence and Asymptotic Behavior of Solutions for Degenerate Nonlinear Kirchhoff Strings with Variable-Exponent Nonlinearities
    Rahmoune Abita
    Acta Mathematica Vietnamica, 2021, 46 : 613 - 643
  • [26] Boundedness for fractional Hardy-type operator on variable-exponent Herz-Morrey spaces
    Wu, Jiang-Long
    Zhao, Wen-Jiao
    KYOTO JOURNAL OF MATHEMATICS, 2016, 56 (04) : 831 - 845
  • [27] Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier-Haar series
    Sharapudinov, I. I.
    SBORNIK MATHEMATICS, 2014, 205 (02) : 291 - 306
  • [28] ON A NONLINEAR EIGENVALUE PROBLEM IN SOBOLEV SPACES WITH VARIABLE EXPONENT
    Dinu, T-L
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2005, 2 : 208 - 217
  • [29] A numerical assessment of the semiconvergence behavior in an inverse-scattering approach to electromagnetic imaging
    Bozza, G.
    Estatico, C.
    Pastorino, M.
    Randazzo, A.
    2007 IEEE INSTRUMENTATION & MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-5, 2007, : 587 - +
  • [30] A BLOW-UP RESULT FOR A CLASS DOUBLY NONLINEAR PARABOLIC EQUATIONS WITH VARIABLE-EXPONENT NONLINEARITIES
    Qingying Hu
    Donghao Li
    Hongwei Zhang
    AnnalsofAppliedMathematics, 2019, 35 (02) : 145 - 151