Additional Basis Functions for the Photonic Wannier Function Method

被引:0
|
作者
Mack, P. [1 ]
Busch, K. [2 ,3 ]
机构
[1] Forschungszentrum Karlsruhe, INT, D-76344 Eggenstein Leopoldshafen, Germany
[2] Univ Karlsruhe, Inst Theoret Festkorperphysik TFP, D-76128 Karlsruhe, Germany
[3] Univ Karlsruhe, DFG CFN, D-76128 Karlsruhe, Germany
关键词
Photonic Crystals; Wannier Functions; Numerical Simulation;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We investigate the efficiency and accuracy of photonic-crystal functional-element computations via the photonic Wannier function approach. In particular, we describe a convergence acceleration scheme that is based on augmenting the Wannier function basis with suitably adapted auxiliary basis functions. Besides providing efficient and accurate cavity and waveguide computations, this will improve computations of transmission characteristics of more complex devices via a scattering matrix approach that utilizes the combined augmented basis set.
引用
收藏
页码:128 / +
页数:2
相关论文
共 50 条
  • [31] Linear scaling calculation of maximally localized Wannier functions with atomic basis set
    Xiang, H. J.
    Li, Zhenyu
    Liang, W. Z.
    Yang, Jinlong
    Hou, J. G.
    Zhu, Qingshi
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (23):
  • [32] Automated construction of maximally localized Wannier functions: Optimized projection functions method
    Mustafa, Jamal I.
    Coh, Sinisa
    Cohen, Marvin L.
    Louie, Steven G.
    PHYSICAL REVIEW B, 2015, 92 (16):
  • [33] Efficient construction of maximally localized photonic Wannier functions: locality criterion and initial conditions
    Stollenwerk, Tobias
    Chigrin, Dmitry N.
    Kroha, Johann
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2011, 28 (08) : 1951 - 1958
  • [34] Numerical simulation of photonic crystal defect modes using unstructured grids and Wannier functions
    Sotirelis, P.
    Albrecht, J. D.
    PHYSICAL REVIEW B, 2007, 76 (07)
  • [35] Inclusion of effects of self-consistency of the electron density within the LDA + U + SO method implemented in the temperature Green’s function formalism in the basis of the Wannier functions
    M. A. Korotin
    N. A. Skorikov
    S. L. Skornyakov
    A. O. Shorikov
    V. I. Anisimov
    JETP Letters, 2015, 100 : 823 - 828
  • [36] LOCALIZED WANNIER FUNCTIONS
    MOREIRA, JAM
    PARADA, NJ
    SOLID STATE COMMUNICATIONS, 1975, 16 (05) : 561 - 562
  • [37] PROPERTIES OF WANNIER FUNCTIONS
    KOHN, W
    MICHAELSON, S
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1958, 72 (464): : 301 - 302
  • [38] APPROXIMATE WANNIER FUNCTIONS
    CHADI, DJ
    COHEN, ML
    SOLID STATE COMMUNICATIONS, 1973, 13 (07) : 1007 - 1009
  • [39] A stochastic radial basis function method for the global optimization of expensive functions
    Regis, Rommel G.
    Shoemaker, Christine A.
    INFORMS JOURNAL ON COMPUTING, 2007, 19 (04) : 497 - 509
  • [40] On the generalized Wannier functions
    Prodan, Emil
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (11)