Rigidity sequences, Kazhdan sets and group topologies on the integers

被引:4
|
作者
Badea, Catalin [1 ]
Grivaux, Sophie [1 ]
Matheron, Etienne [2 ]
机构
[1] Univ Lille, CNRS, UMR 8524, Lab Paul Painleve, F-59000 Lille, France
[2] Univ Artois, Lab Math Lens, Rue Jean Souvraz SP 18, F-62307 Lens, France
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2021年 / 143卷 / 01期
关键词
RECURRENCE; EQUIDISTRIBUTION; THEOREM;
D O I
10.1007/s11854-021-0165-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the relationships between three different classes of sequences (or sets) of integers, namely rigidity sequences, Kazhdan sequences (or sets) and nullpotent sequences. We prove that rigidity sequences are non-Kazhdan and nullpotent, and that all other implications are false. In particular, we show by probabilistic means that there exist sequences of integers which are both nullpotent and Kazhdan. Moreover, using Baire category methods, we provide general criteria for a sequence of integers to be a rigidity sequence. Finally, we give a new proof of the existence of rigidity sequences which are dense in DOUBLE-STRUCK CAPITAL Z for the Bohr topology, a result originally due to Griesmer.
引用
收藏
页码:313 / 347
页数:35
相关论文
共 50 条
  • [31] ON SUMS OF SETS OF INTEGERS
    KEMPERMAN, JHB
    SCHERK, P
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1954, 6 (02): : 238 - 252
  • [32] LACUNARY SETS OF INTEGERS
    HELSON, H
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (02) : 160 - 160
  • [33] Oscillations of sets of integers
    Todorcevic, S
    ADVANCES IN APPLIED MATHEMATICS, 1998, 20 (02) : 220 - 252
  • [34] On spectral sets of integers
    Dutkay, Dorin Ervin
    Kraus, Isabelle
    FRAMES AND HARMONIC ANALYSIS, 2018, 706 : 215 - 234
  • [35] PERIODIC SETS OF INTEGERS
    MATOS, AB
    THEORETICAL COMPUTER SCIENCE, 1994, 127 (02) : 287 - 312
  • [36] Combining sets with integers
    Zarba, CG
    FRONTIERS OF COMBINING SYSTEMS, 2002, 2309 : 103 - 116
  • [37] COMPLEMENTARY SETS OF INTEGERS
    WALDE, RE
    LOSSERS, OP
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (10): : 1144 - &
  • [38] ON CLASSES OF SETS OF INTEGERS
    VOLKMANN, B
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 58 (03) : 385 - 385
  • [39] Intersective sets for sparse sets of integers
    Bienvenu, Pierre-Yves
    Griesmer, John T.
    Le, Anh N.
    Le, Thai Hoang
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2025, 45 (05) : 1370 - 1402
  • [40] PARALLELEPIPEDS IN SETS OF INTEGERS
    BEREND, D
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1987, 45 (02) : 163 - 170