Algebraic independence results for the sixteen families of q-series

被引:2
|
作者
Elsner, Carsten [1 ]
Shimomura, Shun [2 ]
Shiokawa, Iekata [2 ]
Tachiya, Yohei [2 ]
机构
[1] Univ Appl Sci, FHDW Hannover, D-30173 Hannover, Germany
[2] Keio Univ, Dept Math, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
来源
RAMANUJAN JOURNAL | 2010年 / 22卷 / 03期
关键词
Algebraic independence; Jacobian elliptic functions; Ramanujan functions; q-series; Nesterenko's theorem; FIBONACCI NUMBERS; RECIPROCAL SUMS;
D O I
10.1007/s11139-010-9235-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The sixteen families of q-series containing the Ramanujan functions were listed by I.J. Zucker (SIAM J. Math. Anal. 10: 192-206,1979), which are generated from the Fourier series expansions of the Jacobian elliptic functions or some of their squares. This paper discusses algebraic independence properties for these q-series. We determine all the sets of q-series such that, at each algebraic point, the values of the q-series in the set are algebraically independent over Q. We also present several algebraic relations over Q for two or three of these q-series.
引用
收藏
页码:315 / 344
页数:30
相关论文
共 50 条
  • [21] Dissections of Strange q-Series
    Ahlgren, Scott
    Kim, Byungchan
    Lovejoy, Jeremy
    ANNALS OF COMBINATORICS, 2019, 23 (3-4) : 427 - 442
  • [22] On some transformations of q-series
    Zhang, Zhizheng
    Hu, Qiuxia
    UTILITAS MATHEMATICA, 2008, 77 : 277 - 285
  • [23] Certain q-series identities
    Praveen Agarwal
    Shilpi Jain
    Junesang Choi
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 139 - 146
  • [24] Dissections of Strange q-Series
    Scott Ahlgren
    Byungchan Kim
    Jeremy Lovejoy
    Annals of Combinatorics, 2019, 23 : 427 - 442
  • [25] PRETZEL KNOTS AND q-SERIES
    Elhamdadi, Mohamed
    Hajij, Mustafa
    OSAKA JOURNAL OF MATHEMATICS, 2017, 54 (02) : 363 - 381
  • [26] Knots and Their Related q-Series
    Garoufalidis, Stavros
    Zagier, Don
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19
  • [27] On a symmetric q-series identity
    Patkowski, Alexander E.
    DISCRETE MATHEMATICS, 2016, 339 (12) : 2994 - 2997
  • [28] ON THE q-DERIVATIVE AND q-SERIES EXPANSIONS
    Liu, Zhi-Guo
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (08) : 2069 - 2089
  • [29] Generalizations of Hirschhorn's Results on Two Remarkable q-Series Expansions
    Xia, Ernest X. W.
    Zhao, Alice X. H.
    EXPERIMENTAL MATHEMATICS, 2022, 31 (03) : 878 - 882
  • [30] On q-series identities for false theta series
    Jennings-Shaffer, Chris
    Milas, Antun
    ADVANCES IN MATHEMATICS, 2020, 375