Shortest Path Learning in Non-Stationary Enviroments via Online Convex Optimization

被引:0
|
作者
Vural, N. Mert [1 ]
Altas, Burak [2 ]
Ilhan, Fatih [1 ,2 ]
Kozat, Suleyman S. [1 ,2 ]
机构
[1] Bilkent Univ, Elekt & Elekt Muhendisligi Bolumu, Ankara, Turkey
[2] DataBoss AS, Ankara, Turkey
关键词
on-line learning shortest path; non-stationary environment; multi-armed bandit problem;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we study the online shortest path learning problem under semi-bandit feedback in adversarial and non-stationary environments. To develop an efficient algorithm, we use the online convex optimization framework. We introduce an optimal online shortest path algorithm that guarantees to obtain the performance of the shortest path sequence. Since we do not have any statistical assumptions on the path delays, the results in the paper are guaranteed to hold in an individual sequence manner. Hence, our algorithm can be used for a wide range of practical network optimization problems that require exploration and exploitation at the same time.
引用
收藏
页数:5
相关论文
共 50 条
  • [22] Non-Stationary Stochastic Optimization
    Besbes, Omar
    Gur, Yonatan
    Zeevi, Assaf
    OPERATIONS RESEARCH, 2015, 63 (05) : 1227 - 1244
  • [23] Non-stationary Continuum-armed Bandits for Online Hyperparameter Optimization
    Lu, Shiyin
    Zhou, Yu-Hang
    Shi, Jing-Cheng
    Zhu, Wenya
    Yu, Qingtao
    Chen, Qing-Guo
    Da, Qing
    Zhang, Lijun
    WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 618 - 627
  • [24] Convex environmental contours for non-stationary processes
    Sande, Asmund Hausken
    OCEAN ENGINEERING, 2024, 292
  • [25] Online robust non-stationary estimation
    Sankararaman, Abishek
    Narayanaswamy, Balakrishnan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [26] Online Monitoring for Non-Stationary Operation via a Collaborative Neural Network
    He, Sudao
    Chen, Fuyang
    Xu, Ning
    Chen, Hongtian
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [27] Learning and selection of dynamic Bayesian networks for online non-stationary process
    Hourbracq M.
    Wuillemin P.-H.
    Gonzales C.
    Baumard P.
    Revue d'Intelligence Artificielle, 2018, 32 (01) : 75 - 109
  • [28] Online Bayesian Learning for Rate Adaptation in Non-stationary Wireless Channels
    Lei, Xiaoying
    2022 19TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING (SECON), 2022, : 55 - 63
  • [29] Incremental kernel spectral clustering for online learning of non-stationary data
    Langone, Rocco
    Agudelo, Oscar Mauricio
    De Moor, Bart
    Suykens, Johan A. K.
    NEUROCOMPUTING, 2014, 139 : 246 - 260
  • [30] Learning Non-stationary System Dynamics Online Using Gaussian Processes
    Rottmann, Axel
    Burgard, Wolfram
    PATTERN RECOGNITION, 2010, 6376 : 192 - 201