Spatial-temporal trends of hydrological transitions in thermokarst lakes on Northeast Qinghai-Tibet Plateau based on stable isotopes

被引:12
|
作者
Yang, Yuzhong [1 ,2 ,3 ]
Wu, Qingbai [1 ,3 ]
Liu, Fengjing [2 ]
Jin, Huijun [1 ]
机构
[1] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Frozen Soil Engn, Lanzhou 730000, Peoples R China
[2] Michigan Technol Univ, Sch Forest Resources & Environm Sci, Houghton, MI USA
[3] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Beiluhe Observat Stn Frozen Soil Environm & Engn, Lanzhou, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Thermokarst lakes; Source Area of Yellow River (SAYR); Stable isotopes; Ground ice; Permafrost degradation; Water balance; ACTIVE-LAYER HYDROLOGY; BAYAN HAR MOUNTAINS; OLD CROW FLATS; WATER-BALANCE; YELLOW-RIVER; THERMAL REGIME; MASS-BALANCE; SOURCE AREA; DISCONTINUOUS PERMAFROST; ARCTIC LAKES;
D O I
10.1016/j.jhydrol.2021.126314
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Regarded as the water towers of numerous large rivers in Asia, the Source Area of Yellow River (SAYR) on Northeast Qinghai-Tibet Plateau (QTP) contains substantial thermokarst lakes, which have exerted significant roles on the regional hydrology and water resources under permafrost degradation. To address the potential impact of climate- and permafrost-induced changes in surface hydrological processes in the SAYR, the hydrological transitions and water balance of thermokarst lakes were characterized on large scales during three years using stable isotope method. Spatial and seasonal deviations in hydrological processes of thermokarst lakes were remarkable. Calculations of evaporation-to-inflow (E/I) ratios based on an isotope-mass balance model revealed substantial evaporation for all thermokarst lakes during June due to the control of climate conditions and limited input water. Substantial feeds from summer/fall rain and permafrost meltwater resulted in lower evaporation and positive water balance of lakes during July, August, September, and October. Based on the relationship between lake-specific input water isotope compositions (delta(I)) and annual average isotope value of precipitation (delta(P)), the recharge patterns of thermokarst lakes in the SAYR were classified: supra-permafrost water/rainfall-dominated lakes were mainly concentrated during June and October regardless of spatial divergences, and summer precipitation/permafrost thaw-dominated lakes are popular during July and August. Qualitatively, seasonal diversities in the water balance of thermokarst lakes are combinatively controlled by air temperature, precipitation regimes, permafrost degradation in the SAYR. Lastly, the future hydrological trajectories of thermokarst lakes are expected under climatic warming and permafrost degradation. This study serves as an important contribution for understanding future hydrological changes and allocation of water resources on the QTP, as well as an indication of permafrost degradation under climate warming.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Characteristics of stable isotopes and hydrochemistry of river water in the Qinghai Lake Basin, northeast Qinghai-Tibet Plateau, China
    Bu-Li Cui
    Xiao-Yan Li
    Environmental Earth Sciences, 2015, 73 : 4251 - 4263
  • [12] Characteristics of stable isotopes and hydrochemistry of river water in the Qinghai Lake Basin, northeast Qinghai-Tibet Plateau, China
    Cui, Bu-Li
    Li, Xiao-Yan
    ENVIRONMENTAL EARTH SCIENCES, 2015, 73 (08) : 4251 - 4263
  • [13] Temporal and spatial characteristics of the ionosphere in the Qinghai-Tibet Plateau
    Tian, Xiangyu
    Chai, Hongzhou
    Yin, Xiao
    Wang, Min
    Chong, Yang
    Guo, Yunfei
    ADVANCES IN SPACE RESEARCH, 2021, 68 (01) : 225 - 235
  • [14] Thermokarst lakes are hotspots of antibiotic resistance genes in permafrost regions on the Qinghai-Tibet Plateau
    Ren, Ze
    Zhang, Cheng
    Li, Xia
    Luo, Wei
    ENVIRONMENTAL POLLUTION, 2024, 344
  • [15] Estimating nutrient stoichiometry and cascading influences on plankton in thermokarst lakes on the Qinghai-Tibet Plateau
    Ren, Ze
    Yu, Jinlei
    Lin, Zhenmei
    Zhang, Lixiang
    Wang, Mei
    COMMUNICATIONS EARTH & ENVIRONMENT, 2024, 5 (01):
  • [16] Sentinel-Based Inventory of Thermokarst Lakes and Ponds Across Permafrost Landscapes on the Qinghai-Tibet Plateau
    Wei, Zhiqiang
    Du, Zhiheng
    Wang, Lei
    Lin, Jiahui
    Feng, Yaru
    Xu, Qian
    Xiao, Cunde
    EARTH AND SPACE SCIENCE, 2021, 8 (11)
  • [17] Impact of a thermokarst lake on the soil hydrological properties in permafrost regions of the Qinghai-Tibet Plateau, China
    Gao, Zeyong
    Niu, Fujun
    Wang, Yibo
    Luo, Jing
    Lin, Zhanju
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 574 : 751 - 759
  • [18] Frozen soil hydrological modeling for a mountainous catchment northeast of the Qinghai-Tibet Plateau
    Gao, Hongkai
    Han, Chuntan
    Chen, Rensheng
    Feng, Zijing
    Wang, Kang
    Fenicia, Fabrizio
    Savenije, Hubert
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2022, 26 (15) : 4187 - 4208
  • [19] Thermokarst lakes group accelerates permafrost degradation in the Qinghai-Tibet Plateau, China: A modeling study
    Ke, Xianmin
    Wang, Wei
    Huang, Wenfeng
    Niu, Fujun
    Gao, Zeyong
    JOURNAL OF HYDROLOGY, 2023, 625
  • [20] Shrinking thermokarst lakes and ponds on the northeastern Qinghai-Tibet plateau over the past three decades
    Serban, Raul-David
    Jin, Huijun
    Serban, Mihaela
    Luo, Dongliang
    PERMAFROST AND PERIGLACIAL PROCESSES, 2021, 32 (04) : 601 - 617