Two-dimensional electroelastic fundamental solutions for general anisotropic piezoelectric media

被引:0
|
作者
Liu, JX [1 ]
Wang, B
Du, SY
机构
[1] Shijiazhuang Railway Inst, Dept Civil Engn, Shijiazhuang 050043, Peoples R China
[2] Harbin Inst Technol, Harbin 150001, Peoples R China
关键词
piezoelectric medium; plane wave decomposition method; electroelastic field; fundamental solution;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Explicit fomulas for 2-D electroelastic fundamental solutions in general anisotropic piezoelectric media subjected to a line force and a line charge are obtained by using the plane wave decomposition method and a subsequent application of the residue calculus. "Anisotropic" means that any material symmetry restrictions are not assumed. "Two dimensional" includes not only in-plane problems but also anti-plane problems and problems in which in-plane and anti-plane deformations couple each other. As a special case, the solutions for transversely isotropic piezoelectric media are given.
引用
收藏
页码:949 / 956
页数:8
相关论文
共 50 条
  • [21] An invariant method of fundamental solutions for two-dimensional steady-state anisotropic heat conduction problems
    Marin, Liviu
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 94 : 449 - 464
  • [22] Electroelastic analysis of two-dimensional ultrathin layered piezoelectric films by an advanced boundary element method
    Gu, Yan
    Sun, Linlin
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (11) : 2653 - 2671
  • [23] Two-dimensional steady-state general solutions for isotropic hygrothermoelastic media with applications
    J. Tong
    B. K. Zhang
    Z. L. Xu
    J. Su
    P. F. Hou
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [24] Two-dimensional steady-state general solutions for isotropic hygrothermoelastic media with applications
    Tong, J.
    Zhang, B. K.
    Xu, Z. L.
    Su, J.
    Hou, P. F.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (05):
  • [25] Two-dimensional steady-state general solution for isotropic thermoelastic materials with applications. I: General solutions and fundamental solutions
    Hou, Peng-Fei
    Tong, Jie
    Zhao, Meng
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (23) : 9786 - 9797
  • [26] Some Remarks on the Method of Fundamental Solutions for Two-Dimensional Elasticity
    Hematiyan, M. R.
    Arezou, M.
    Dezfouli, N. Koochak
    Khoshroo, M.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2019, 121 (02): : 661 - 686
  • [27] Fundamental solutions for transversely isotropic piezoelectric media
    Ding, HJ
    Liang, J
    Chen, B
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1996, 39 (07): : 766 - 775
  • [28] Reactive-diffusive phenomena in two-dimensional, anisotropic media
    Ramos, JI
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2003, 13 (08) : 997 - 1030
  • [29] Fundamental solutions for transversely isotropic piezoelectric media
    丁皓江
    梁剑
    陈波
    Science China Mathematics, 1996, (07) : 766 - 775
  • [30] Fundamental solutions for variable density two-dimensional elastodynamic problems
    Manolis, GD
    Shaw, RP
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2000, 24 (10) : 739 - 750