NICKEL-COBALT OXIDE THIN-FILMS ANODES FOR LITHIUM-ION BATTERIES

被引:1
|
作者
Mitrofanov, Ilya [1 ]
Nazarov, Denis [1 ]
Koshtyal, Yury [1 ]
Ezhov, Ilya [1 ]
Fedorov, Pavel [1 ]
Rumyantsev, Aleksander [2 ]
Popovich, Anatoliy [1 ]
Maximov, Maxim [1 ]
机构
[1] Peter Great St Petersburg Polytech Univ, St Petersburg, Russia
[2] Ioffe Inst, St Petersburg, Russia
基金
俄罗斯科学基金会;
关键词
Atomic layer deposition; Nickel-cobalt oxide; lithium-ion batteries; solid-state lithium-ion batteries;
D O I
10.37904/nanocon.2020.3714
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thin-film transition metal oxides can be applied as transparent conductive coatings, photocatalysts, thermoelectric generators, and battery electrodes. In power sources application binary transition metal oxides are attractive due to high theoretical capacities. Among them nickel-cobalt oxides possess the highest (NiCoO2, 717mAh/g or 471.4 mu Ah cm-(2) mu m-(1)). This work is devoted to Atomic layer deposition (ALD) of thin-films of nickel-cobalt oxides and evaluating their performance as negative electrodes for solid-state lithium-ion batteries. Ni-Co-O thin films were synthesized with different NiO/CoO ALD cycles ratio (5/1, 3/1, and 1/1) using nickelocene, cobaltocene and oxygen plasma. Both NiO and CoO crystal phases were observed in deposited films. The content of chemical elements (C, O, Ni and Co) in the film's depth are uniform, except for sample 5/1. The electrochemical performance of synthesized thin films was studied by cyclic voltammetry and galvanostatic cycling. It was found that with an increase of the nickel content in the coatings, the electrode's specific capacity is increasing. The highest capacity at high discharge currents (35C) is observed for the sample obtained with NiO/CoO - 5/1 ratio (660 mu A.h.mu m(-1).cm-(2))
引用
收藏
页码:196 / 201
页数:6
相关论文
共 50 条
  • [41] Optimization Strategies of Hybrid Lithium Titanate Oxide/Carbon Anodes for Lithium-Ion Batteries
    Apostolopoulou, Maria
    Vernardou, Dimitra
    Passerini, Stefano
    NANOMATERIALS, 2024, 14 (22)
  • [42] Preparation and characterization of nanosized lithium cobalt oxide powders for lithium-ion batteries
    Lu, CH
    Chang, HH
    Lin, YK
    CERAMICS INTERNATIONAL, 2004, 30 (07) : 1641 - 1645
  • [43] Area and capacitance characterization of nickel, cobalt, and nickel-cobalt electrodeposited thin films
    Gira, Matthew J.
    Hampton, Jennifer R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [44] Elemental Foil Anodes for Lithium-Ion Batteries
    Heligman, Brian T.
    Manthiram, Arumugam
    ACS ENERGY LETTERS, 2021, 6 (08) : 2666 - 2672
  • [45] Overview of carbon anodes for lithium-ion batteries
    Zaghib, K
    Kinoshita, K
    NEW TRENDS IN INTERCALATION COMPOUNDS FOR ENERGY STORAGE, 2002, 61 : 27 - 38
  • [46] Microstructured silicon anodes for lithium-ion batteries
    G. V. Li
    E. V. Astrova
    A. M. Rumyantsev
    V. B. Voronkov
    A. V. Parfen’eva
    V. A. Tolmachev
    T. L. Kulova
    A. M. Skundin
    Russian Journal of Electrochemistry, 2015, 51 : 899 - 907
  • [47] Microstructured silicon anodes for lithium-ion batteries
    Li, G. V.
    Astrova, E. V.
    Rumyantsev, A. M.
    Voronkov, V. B.
    Parfen'eva, A. V.
    Tolmachev, V. A.
    Kulova, T. L.
    Skundin, A. M.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2015, 51 (10) : 899 - 907
  • [48] Analysis of SiO anodes for lithium-ion batteries
    Miyachi, M
    Yamamoto, H
    Kawai, H
    Ohta, T
    Shirakata, M
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (10) : A2089 - A2091
  • [49] Issues and challenges of layered lithium nickel cobalt manganese oxides for lithium-ion batteries
    Chen, Shi
    Zhang, Xikun
    Xia, Maoting
    Wei, Kaiyuan
    Zhang, Liyuan
    Zhang, Xiaoqiang
    Cui, Yanhua
    Shu, Jie
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 895
  • [50] AGEING OF THIN FILMS OF NICKEL, COBALT AND NICKEL-COBALT ALLOYS IN ULTRAHIGH VACUUM
    ROMANOWS.W
    POTOCZNA.D
    THIN SOLID FILMS, 1971, 8 (01) : 35 - &