NICKEL-COBALT OXIDE THIN-FILMS ANODES FOR LITHIUM-ION BATTERIES

被引:1
|
作者
Mitrofanov, Ilya [1 ]
Nazarov, Denis [1 ]
Koshtyal, Yury [1 ]
Ezhov, Ilya [1 ]
Fedorov, Pavel [1 ]
Rumyantsev, Aleksander [2 ]
Popovich, Anatoliy [1 ]
Maximov, Maxim [1 ]
机构
[1] Peter Great St Petersburg Polytech Univ, St Petersburg, Russia
[2] Ioffe Inst, St Petersburg, Russia
基金
俄罗斯科学基金会;
关键词
Atomic layer deposition; Nickel-cobalt oxide; lithium-ion batteries; solid-state lithium-ion batteries;
D O I
10.37904/nanocon.2020.3714
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thin-film transition metal oxides can be applied as transparent conductive coatings, photocatalysts, thermoelectric generators, and battery electrodes. In power sources application binary transition metal oxides are attractive due to high theoretical capacities. Among them nickel-cobalt oxides possess the highest (NiCoO2, 717mAh/g or 471.4 mu Ah cm-(2) mu m-(1)). This work is devoted to Atomic layer deposition (ALD) of thin-films of nickel-cobalt oxides and evaluating their performance as negative electrodes for solid-state lithium-ion batteries. Ni-Co-O thin films were synthesized with different NiO/CoO ALD cycles ratio (5/1, 3/1, and 1/1) using nickelocene, cobaltocene and oxygen plasma. Both NiO and CoO crystal phases were observed in deposited films. The content of chemical elements (C, O, Ni and Co) in the film's depth are uniform, except for sample 5/1. The electrochemical performance of synthesized thin films was studied by cyclic voltammetry and galvanostatic cycling. It was found that with an increase of the nickel content in the coatings, the electrode's specific capacity is increasing. The highest capacity at high discharge currents (35C) is observed for the sample obtained with NiO/CoO - 5/1 ratio (660 mu A.h.mu m(-1).cm-(2))
引用
收藏
页码:196 / 201
页数:6
相关论文
共 50 条
  • [1] Review of Modified Nickel-Cobalt Lithium Aluminate Cathode Materials for Lithium-Ion Batteries
    Wang, Ding
    Liu, Weihong
    Zhang, Xuhong
    Huang, Yue
    Xu, Mingbiao
    Xiao, Wei
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2019, 2019
  • [2] RESISTANCE AND MAGNETORESISTANCE IN NICKEL-COBALT THIN-FILMS
    MCGUIRE, TR
    BATE, G
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (03): : 444 - 445
  • [3] Nickel-cobalt oxides/carbon nanoflakes as anode materials for lithium-ion batteries
    NuLi, Yanna
    Zhang, Peng
    Guo, Zaiping
    Liu, Huakun
    Yang, Jun
    Wang, Jiulin
    MATERIALS RESEARCH BULLETIN, 2009, 44 (01) : 140 - 145
  • [4] Synthesis and electrochemical properties of nickel oxide as anodes for lithium-ion batteries
    Ortiz, Mariela G.
    Visintin, Arnaldo
    Real, Silvia G.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 883
  • [5] Thin-Film Lithium Cobalt Oxide for Lithium-Ion Batteries
    Duan, Zeqing
    Wu, Yunfan
    Lin, Jie
    Wang, Laisen
    Peng, Dong-Liang
    ENERGIES, 2022, 15 (23)
  • [6] Fabrication of nickel manganese cobalt oxide (NMCO) anodes for lithium-ion batteries via hydrothermal process
    Reyhan Solmaz
    B. Deniz Karahan
    Ozgul Keles
    Journal of Applied Electrochemistry, 2020, 50 : 1079 - 1089
  • [7] Fabrication of nickel manganese cobalt oxide (NMCO) anodes for lithium-ion batteries via hydrothermal process
    Solmaz, Reyhan
    Karahan, B. Deniz
    Keles, Ozgul
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2020, 50 (10) : 1079 - 1089
  • [8] THIN-FILMS OF LITHIUM COBALT OXIDE
    WEI, GA
    HAAS, TE
    GOLDNER, RB
    SOLID STATE IONICS, 1992, 58 (1-2) : 115 - 122
  • [9] Prismatic lithium-ion rechargeable battery with manganese spinel and nickel-cobalt oxide cathode
    Tsunoda, M
    Oshima, Y
    Yoshinaga, M
    Shirasu, T
    NEC RESEARCH & DEVELOPMENT, 2000, 41 (01): : 13 - 17
  • [10] Prismatic lithium-ion rechargeable battery with manganese spinel and nickel-cobalt oxide cathode
    Tsunoda, Michihiko, 2000, NEC Creative Ltd., Tokyo, Japan (41):