Salient Object Detection via Augmented Hypotheses

被引:0
|
作者
Nguyen, Tam, V [1 ]
Sepulveda, Jose [1 ]
机构
[1] Singapore Polytech, Dept Technol Innovat & Enterprise, Singapore, Singapore
来源
PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI) | 2015年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose using augmented hypotheses which consider objectness, foreground and compactness for salient object detection. Our algorithm consists of four basic steps. First, our method generates the objectness map via objectness hypotheses. Based on the objectness map, we estimate the foreground margin and compute the corresponding foreground map which prefers the foreground objects. From the objectness map and the foreground map, the compactness map is formed to favor the compact objects. We then derive a saliency measure that produces a pixel-accurate saliency map which uniformly covers the objects of interest and consistently separates fore-and background. We finally evaluate the proposed framework on two challenging datasets, MSRA-1000 and iCoSeg. Our extensive experimental results show that our method outperforms state-of-the-art approaches.
引用
收藏
页码:2176 / 2182
页数:7
相关论文
共 50 条
  • [31] Salient object detection via color and texture cues
    Zhang, Qing
    Lin, Jiajun
    Tao, Yanyun
    Li, Wenju
    Shi, Yanjiao
    NEUROCOMPUTING, 2017, 243 : 35 - 48
  • [32] Salient object detection via multiple saliency weights
    Tan, Weimin
    Yan, Bo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (23) : 25091 - 25107
  • [33] Salient Object Detection via Multiple Random Walks
    Zhai, Jiyou
    Zhou, Jingbo
    Ren, Yongfeng
    Wang, Zhijian
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2016, 10 (04): : 1712 - 1731
  • [34] Salient Object Detection via Multiple Instance Learning
    Huang, Fang
    Qi, Jinqing
    Lu, Huchuan
    Zhang, Lihe
    Ruan, Xiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (04) : 1911 - 1922
  • [35] AUGMENTED SEMI-SUPERVISED LEARNING FOR SALIENT OBJECT DETECTION WITH EDGE COMPUTING
    Yu, Chengjin
    Zhang, Yanping
    Mukherjee, Mithun
    Lloret, Jaime
    IEEE WIRELESS COMMUNICATIONS, 2022, 29 (03) : 109 - 114
  • [36] Weakly supervised salient object detection via double object proposals guidance
    Zhou, Zhiheng
    Guo, Yongfan
    Dai, Ming
    Huang, Junchu
    Li, Xiangwei
    IET IMAGE PROCESSING, 2021, 15 (09) : 1957 - 1970
  • [37] Salient object detection via contrast information and object vision organization cues
    Qi, Shengxiang
    Yu, Jin-Gang
    Ma, Jie
    Li, Yansheng
    Tian, Jinwen
    NEUROCOMPUTING, 2015, 167 : 390 - 405
  • [38] Salient Object Detection via Fuzzy Theory and Object-Level Enhancement
    Zhou, Yuan
    Mao, Ailing
    Huo, Shuwei
    Lei, Jianjun
    Kung, Sun-Yuan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (01) : 74 - 85
  • [39] Salient Object Detection via Two-Stage Graphs
    Liu, Yi
    Han, Jungong
    Zhang, Qiang
    Wang, Long
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (04) : 1023 - 1037
  • [40] Salient object detection via images frequency domain analyzing
    He, Chao
    Chen, Zhenxue
    Liu, Chengyun
    SIGNAL IMAGE AND VIDEO PROCESSING, 2016, 10 (07) : 1295 - 1302