Superpixel-Based Attention Graph Neural Network for Semantic Segmentation in Aerial Images

被引:21
|
作者
Diao, Qi [1 ]
Dai, Yaping [1 ]
Zhang, Ce [2 ,3 ]
Wu, Yan [4 ]
Feng, Xiaoxue [1 ]
Pan, Feng [1 ,5 ]
机构
[1] Beijing Inst Technol, Beijing 100081, Peoples R China
[2] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YQ, England
[3] UK Ctr Ecol & Hydrol, Lib Ave, Lancaster LA1 4AP, England
[4] A STAR Inst Infocomm Res, Robot & Autonomous Syst Dept, Singapore 138632, Singapore
[5] Kunming BIT Ind Technol Res Inst Inc, Kunming 650106, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
graph neural networks; superpixel; attention mechanism; semantic segmentation; aerial images; FULLY CONVOLUTIONAL NETWORK; CLASSIFICATION; EXTRACTION;
D O I
10.3390/rs14020305
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Semantic segmentation is one of the significant tasks in understanding aerial images with high spatial resolution. Recently, Graph Neural Network (GNN) and attention mechanism have achieved excellent performance in semantic segmentation tasks in general images and been applied to aerial images. In this paper, we propose a novel Superpixel-based Attention Graph Neural Network (SAGNN) for semantic segmentation of high spatial resolution aerial images. A K-Nearest Neighbor (KNN) graph is constructed from our network for each image, where each node corresponds to a superpixel in the image and is associated with a hidden representation vector. On this basis, the initialization of the hidden representation vector is the appearance feature extracted by a unary Convolutional Neural Network (CNN) from the image. Moreover, relying on the attention mechanism and recursive functions, each node can update its hidden representation according to the current state and the incoming information from its neighbors. The final representation of each node is used to predict the semantic class of each superpixel. The attention mechanism enables graph nodes to differentially aggregate neighbor information, which can extract higher-quality features. Furthermore, the superpixels not only save computational resources, but also maintain object boundary to achieve more accurate predictions. The accuracy of our model on the Potsdam and Vaihingen public datasets exceeds all benchmark approaches, reaching 90.23% and 89.32%, respectively.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Automatic superpixel-based segmentation method for breast ultrasound images
    Daoud, Mohammad I.
    Atallah, Ayman A.
    Awwad, Falah
    Al-Najjar, Mahasen
    Alazrai, Rami
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 121 (78-96) : 78 - 96
  • [12] Superpixel-based Segmentation for Multi-temporal PolSAR Images
    Bao, Junliang
    Yin, Junjun
    Yang, Jian
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2017, : 654 - 658
  • [13] Superpixel-based segmentation of glottal area from videolaryngoscopy images
    Turkmen, H. Irem
    Albayrak, Abdulkadir
    Karsligil, M. Elif
    Kocak, Ismail
    JOURNAL OF ELECTRONIC IMAGING, 2017, 26 (06)
  • [14] Superpixel Based Graph Convolutional Neural Network for SAR Image Segmentation
    Turkmenli, Ilter
    Aptoula, Erchan
    Kayabol, Koray
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVII, 2021, 11862
  • [15] Fast and Automatic Image Segmentation Using Superpixel-Based Graph Clustering
    Jia, Xiaohong
    Lei, Tao
    Liu, Peng
    Xue, Dinghua
    Meng, Hongying
    Nandi, Asoke K.
    IEEE ACCESS, 2020, 8 : 211526 - 211539
  • [16] Affinity Attention Graph Neural Network for Weakly Supervised Semantic Segmentation
    Zhang, Bingfeng
    Xiao, Jimin
    Jiao, Jianbo
    Wei, Yunchao
    Zhao, Yao
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) : 8082 - 8096
  • [17] Superpixel-Based Segmentation for 3D Prostate MR Images
    Tian, Zhiqiang
    Liu, Lizhi
    Zhang, Zhenfeng
    Fei, Baowei
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (03) : 791 - 801
  • [18] Fuzzy Superpixel-based Image Segmentation
    Ng, Tsz Ching
    Choy, Siu Kai
    Lam, Shu Yan
    Yu, Kwok Wai
    PATTERN RECOGNITION, 2023, 134
  • [19] SUPERPIXEL-BASED SEGMENTATION OF REMOTE SENSING IMAGES THROUGH CORRELATION CLUSTERING
    Masi, Giuseppe
    Gaetano, Raffaele
    Poggi, Giovanni
    Scarpa, Giuseppe
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1028 - 1031
  • [20] Beyond pixel: Superpixel-based MRI segmentation through traditional machine learning and graph convolutional network
    Khatun, Zakia
    Jonsson Jr, Halldor
    Tsirilaki, Mariella
    Maffulli, Nicola
    Oliva, Francesco
    Daval, Pauline
    Tortorella, Francesco
    Gargiulo, Paolo
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 256