Local and CMOS-compatible synthesis of CuO nanowires on a suspended microheater on a silicon substrate

被引:49
|
作者
Zhang, Kaili [1 ]
Yang, Yang [2 ]
Pun, E. Y. B. [3 ]
Shen, Ruiqi [2 ]
机构
[1] City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
[2] Nanjing Univ Sci & Technol, Dept Appl Chem, Nanjing 210094, Peoples R China
[3] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
关键词
NANOENERGETIC MATERIALS; FIELD-EMISSION; NANORODS; SENSORS; OXIDES; FILMS; AIR;
D O I
10.1088/0957-4484/21/23/235602
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper presents the synthesis of CuO nanowires using a localized thermal heating method in ambient air. It employs local heat sources defined in micro-resistive heaters fabricated by a standard polysilicon-based surface micromachining process instead of a global furnace heating. Since the synthesis is performed globally at room temperature, the presented process is compatible with standard CMOS. The synthesized CuO nanowires are characterized by scanning electron microscopy, transmission electron microscopy and high resolution transmission electron microscopy. It is found that this approach provides a simple method to locally synthesize suspended CuO nanowires on polysilicon microbridges on silicon substrates, thus allowing for integration of CuO nanowires into silicon-based devices. It provides a significant step towards the process integration of CuO nanowires with MEMS to realize functional devices.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Optimization of high Q CMOS-compatible microwave inductors using silicon CMOS technology
    Park, M
    Lee, S
    Yu, HK
    Nam, KS
    1997 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS (RFIC) SYMPOSIUM: DIGEST OF TECHNICAL PAPERS, 1997, : 181 - 184
  • [32] CMOS-compatible surface-micromachined suspended-spiral inductors for multi-GHz silicon RF ICs
    Yoon, JB
    Choi, YS
    Kim, BI
    Eo, Y
    Yoon, E
    IEEE ELECTRON DEVICE LETTERS, 2002, 23 (10) : 591 - 593
  • [33] Optimization of high Q CMOS-compatible microwave inductors using silicon CMOS technology
    Park, M
    Lee, SH
    Yu, HK
    Nam, KS
    1997 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS I-III: HIGH FREQUENCIES IN HIGH PLACES, 1997, : 129 - 132
  • [34] CMOS-compatible Titanium Dioxide Deposition for Athermalization of Silicon Photonic Waveguides
    Shang, Kuanping
    Djordjevic, Stevan S.
    Li, Jun
    Liao, Ling
    Basak, Juthika
    Liu, Hai-Feng
    Yoo, S. J. B.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [35] Spin-based quantum computing in silicon CMOS-compatible platforms
    Dzurak, A. S.
    2016 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2016,
  • [36] Design and simulation of integrated inductors on porous silicon in CMOS-compatible processes
    Contopanagos, H.
    Nassiopoulou, A. G.
    SOLID-STATE ELECTRONICS, 2006, 50 (7-8) : 1283 - 1290
  • [37] A Universal Bonding Strategy for Achieving CMOS-Compatible Silicon Heterogeneous Integration
    Du, Yu
    Jiang, Heng
    Zhu, Bingxuan
    Yan, Han
    Chai, Yao
    Tsoi, Chi Chung
    Zhang, Xuming
    Wang, Chenxi
    ADVANCED MATERIALS TECHNOLOGIES, 2025,
  • [38] CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide
    Djordjevic, Stevan S.
    Shang, Kuanping
    Guan, Binbin
    Cheung, Stanley T. S.
    Liao, Ling
    Basak, Juthika
    Liu, Hai-Feng
    Yoo, S. J. B.
    OPTICS EXPRESS, 2013, 21 (12): : 13958 - 13968
  • [39] Test structures for CMOS-compatible silicon pressure sensors reliability characterization
    Montané, E
    Bota, S
    Marco, S
    Carmona, M
    Samitier, J
    DESIGN, TEST, INTEGRATION, AND PACKAGING OF MEMS/MOEMS, PROCEEDINGS, 2000, 4019 : 250 - 256
  • [40] CMOS-compatible reconfigurable microring demultiplexer with doped silicon slab heater
    Xiong, Kang
    Xiao, Xi
    Li, Xianyao
    Hu, Yingtao
    Li, Zhiyong
    Chu, Tao
    Yu, Yude
    Yu, Jinzhong
    OPTICS COMMUNICATIONS, 2012, 285 (21-22) : 4368 - 4371