A DEGREE SEQUENCE STRENGTHENING OF THE VERTEX DEGREE THRESHOLD FOR A PERFECT MATCHING IN 3-UNIFORM HYPERGRAPHS*

被引:3
|
作者
Bowtell, Candida [1 ]
Hyde, Joseph [2 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
基金
欧洲研究理事会;
关键词
degree sequences; perfect matchings; hypergraphs; vertex degree;
D O I
10.1137/20M1364825
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study of asymptotic minimum degree thresholds that force matchings and tilings in hypergraphs is a lively area of research in combinatorics. A key breakthrough in this area was a result of Han, Person, and Schacht [SIAM J. Disc. Math., 23 (2009), pp. 732-748] who proved that the asymptotic minimum vertex degree threshold for a perfect matching in an n-vertex 3-graph is (5/9 + o(1) (n 2). In this paper, we improve on this result, giving a family of degree sequence results, all of which imply the result of H`an, Person and Schacht and additionally allow one-third of the vertices to have degree 1/9 (n 2) below this threshold. Furthermore, we show that this result is, in some sense, tight.
引用
收藏
页码:1038 / 1063
页数:26
相关论文
共 50 条
  • [41] Partitioning 3-uniform hypergraphs
    Ma, Jie
    Yu, Xingxing
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (01) : 212 - 232
  • [42] Wickets in 3-uniform hypergraphs
    Solymosi, Jozsef
    DISCRETE MATHEMATICS, 2024, 347 (06)
  • [43] Exact minimum degree thresholds for perfect matchings in uniform hypergraphs II
    Treglown, Andrew
    Zhao, Yi
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (07) : 1463 - 1482
  • [44] Perfect matchings in large uniform hypergraphs with large minimum collective degree
    Roedl, Vojtech
    Rucinski, Andrzej
    Szemeredi, Endre
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (03) : 613 - 636
  • [45] A note on perfect matchings in uniform hypergraphs with large minimum collective degree
    Rodl, Vojtech
    Rucinski, Andrzej
    Schacht, Mathias
    Szemeredi, Endre
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2008, 49 (04): : 633 - 636
  • [46] Perfect Matching in k-partite k-graphs and 3-uniform HM-bipartite Hypergraphs
    Chun-qiu FANG
    Mei LU
    ActaMathematicaeApplicataeSinica, 2020, 36 (03) : 636 - 641
  • [47] An algebraic approach to the reconstruction of uniform hypergraphs from their degree sequence
    Ascolese, Michela
    Frosini, Andrea
    Pergola, Elisa
    Rinaldi, Simone
    Vuillon, Laurent
    THEORETICAL COMPUTER SCIENCE, 2024, 1020
  • [48] Perfect Matching in k-partite k-graphs and 3-uniform HM-bipartite Hypergraphs
    Chun-qiu Fang
    Mei Lu
    Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 636 - 641
  • [49] Perfect Matching in k-partite k-graphs and 3-uniform HM-bipartite Hypergraphs
    Fang, Chun-qiu
    Lu, Mei
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (03): : 636 - 641
  • [50] Book free 3-uniform hypergraphs
    Ghosh, Debarun
    Gyori, Ervin
    Nagy-Gyorgy, Judit
    Paulos, Addisu
    Xiao, Chuanqi
    Zamora, Oscar
    DISCRETE MATHEMATICS, 2024, 347 (03)