Direction Finding with L1-norm Subspaces

被引:8
|
作者
Markopoulos, P. P. [1 ]
Tsagkarakis, N. [1 ]
Pados, D. A. [1 ]
Karystinos, G. N. [2 ]
机构
[1] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
[2] Tech Univ Crete, Sch Elect & Comp Engn, Khania 73100, Greece
来源
COMPRESSIVE SENSING III | 2014年 / 9109卷
关键词
Dimensionality reduction; direction-of-arrival estimation; erroneous data; faulty measurements; jamming; L-1; norm; L-2; principal-component analysis; outlier resistance; subspace signal processing; MAXIMUM-LIKELIHOOD; WIDE-BAND; LOCALIZATION; MUSIC;
D O I
10.1117/12.2053049
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conventional subspace-based signal direction-of-arrival estimation methods rely on the familiar L-2-norm-derived principal components (singular vectors) of the observed sensor-array data matrix. In this paper, for the first time in the literature, we find the L-1-norm maximum projection components of the observed data and search in their subspace for signal presence. We demonstrate that L-1-subspace direction-of-arrival estimation exhibits (i) similar performance to L-2 (usual singular-value/eigen-vector decomposition) direction-of-arrival estimation under normal nominal-data system operation and (ii) significant resistance to sporadic/occasional directional jamming and/or faulty measurements.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] On the concentration of measure and the L1-norm
    Malykhin, Yu. V.
    Ryutin, K. S.
    JOURNAL OF APPROXIMATION THEORY, 2013, 175 : 77 - 82
  • [22] Beacon-assisted Underwater Localization by L1-norm Space-Time Tensor Subspaces
    Tountas, Konstantinos
    Sklivanitis, Georgios
    Pados, Dimitris A.
    OCEANS 2019 MTS/IEEE SEATTLE, 2019,
  • [24] Robust Tensor Analysis With L1-Norm
    Pang, Yanwei
    Li, Xuelong
    Yuan, Yuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2010, 20 (02) : 172 - 178
  • [25] Fast alternating direction algorithms for sparse portfolio model via sorted l1-norm
    Liu, Wenxiu
    Xu, Lijun
    Zhou, Yijia
    Yu, Bo
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 11853 - 11872
  • [26] Subspace Embeddings for the L1-norm with Applications
    Sohler, Christian
    Woodruff, David P.
    STOC 11: PROCEEDINGS OF THE 43RD ACM SYMPOSIUM ON THEORY OF COMPUTING, 2011, : 755 - 764
  • [27] L1-NORM MINIMIZATION FOR OCTONION SIGNALS
    Wang, Rui
    Xiang, Guijun
    Zhang, Fagan
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2016, : 552 - 556
  • [28] A CLUSTERING METHOD BASED ON THE L1-NORM
    JAJUGA, K
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1987, 5 (04) : 357 - 371
  • [29] L1-NORM BASED FUZZY CLUSTERING
    JAJUGA, K
    FUZZY SETS AND SYSTEMS, 1991, 39 (01) : 43 - 50
  • [30] Bayesian L1-norm sparse learning
    Lin, Yuanqing
    Lee, Daniel D.
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5463 - 5466