Sample size problems in ANOVA Bayesian point of view

被引:10
|
作者
DasGupta, A
Vidakovic, B
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Duke Univ, Inst Stat & Decis Sci, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
sample size problem; ANOVA; Bayesian point of view;
D O I
10.1016/S0378-3758(97)00056-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we discuss the sample size problem for balanced one-way ANOVA under a posterior Bayesian formulation of the problem. Using the distribution theory of appropriate quadratic forms we derive explicit sample sizes for prespecified posterior precisions. Comparisons with classical sample sizes are made. Instead of extensive tables, a MATHEMATICA program for sample size calculation is given. The formulations given in this article form a foundational step towards Bayesian calculation of sample size, in general. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:335 / 347
页数:13
相关论文
共 50 条
  • [31] Point of view: Is cell size a spandrel?
    Amir, Ariel
    ELIFE, 2017, 6
  • [32] Sample size determination for point-of-care COVID-19 diagnostic tests: a Bayesian approach
    Williamson, S. Faye
    Williams, Cameron J.
    Lendrem, B. Clare
    Wilson, Kevin J.
    DIAGNOSTIC AND PROGNOSTIC RESEARCH, 2023, 7 (01)
  • [33] VIEW-POINT AND PROBLEMS OF GERIATRICS
    SCHUBERT, R
    AKTUELLE GERONTOLOGIE, 1974, 4 (02) : 69 - 76
  • [34] PROBLEMS OF FARM YOUTH - A POINT OF VIEW
    Landis, Paul H.
    SOCIAL FORCES, 1940, 18 (04) : 502 - 513
  • [35] PROBLEMS FOR POLYTECHNICS - AMERICAN POINT OF VIEW
    TROW, M
    UNIVERSITIES QUARTERLY, 1969, 23 (04): : 381 - 396
  • [36] Knapsack problems: A parameterized point of view
    Gurski, Frank
    Rehs, Carolin
    Rethmann, Jochen
    THEORETICAL COMPUTER SCIENCE, 2019, 775 : 93 - 108
  • [37] An adaptive reduced basis ANOVA method forhigh-dimensional Bayesian inverse problems
    Liao, Qifeng
    Li, Jinglai
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 396 : 364 - 380
  • [38] Small-sample size problems solving based on incremental learning: an adaptive Bayesian quadrature approach
    Yiding Feng
    Xiang Feng
    Huiqun Yu
    Applied Intelligence, 2023, 53 : 15174 - 15187
  • [39] Small-sample size problems solving based on incremental learning: an adaptive Bayesian quadrature approach
    Feng, Yiding
    Feng, Xiang
    Yu, Huiqun
    APPLIED INTELLIGENCE, 2023, 53 (12) : 15174 - 15187
  • [40] AN APPROXIMATION TO SAMPLE SIZE IN SELECTION PROBLEMS
    DUDEWICZ, J
    ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (02): : 492 - &