On the norm of the hyperinterpolation operator on the d-dimensional cube

被引:13
|
作者
Wang, Heping [1 ]
Wang, Kai [2 ]
Wang, Xiaoli [2 ]
机构
[1] Capital Normal Univ, Sch Math Sci, BCMIIS, Beijing 100048, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Hyperinterpolation; Operator norm; Projection; Regular condition; GENERALIZED HYPERINTERPOLATION; APPROXIMATION; SPHERE;
D O I
10.1016/j.camwa.2014.07.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain the asymptotic order of the operator norm of the hyperinterpolation operator on the cube I-d = [-1, 1](d), d >= 2 with respect to the measure d mu(x) = Pi(d)(i=1) dx(i)/pi root 1-x(i)(2). This gives an affirmative answer to a conjecture raised by Caliari et al. (2008). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:632 / 638
页数:7
相关论文
共 50 条
  • [31] THE D-DIMENSIONAL LANDSBERG GAS
    DUNNINGDAVIES, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (11): : 3005 - 3012
  • [32] On d-dimensional dual hyperovals
    Del Fra, A
    GEOMETRIAE DEDICATA, 2000, 79 (02) : 157 - 178
  • [33] PERMANENTS OF D-DIMENSIONAL MATRICES
    DOW, SJ
    GIBSON, PM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 90 : 133 - 145
  • [34] SCOZA for D-dimensional spins
    NTNU, Trondheim, Norway
    Phys A Stat Theor Phys, 1-4 (176-189):
  • [35] d-dimensional arrangement revisited
    Rotter, Daniel
    Vygen, Jens
    INFORMATION PROCESSING LETTERS, 2013, 113 (13) : 498 - 505
  • [36] Antibandwidth of d-Dimensional Meshes
    Torok, Lubomir
    Vrt'o, Imrich
    COMBINATORIAL ALGORITHMS, 2009, 5874 : 471 - +
  • [37] Inexpensive d-dimensional matchings
    Huang, BS
    Perkovic, L
    Schmutz, E
    RANDOM STRUCTURES & ALGORITHMS, 2002, 20 (01) : 50 - 58
  • [38] D-dimensional log gravity
    Alishahiha, Mohsen
    Fareghbal, Reza
    PHYSICAL REVIEW D, 2011, 83 (08):
  • [39] D-DIMENSIONAL MOMENTS OF INERTIA
    BENDER, CM
    MEAD, LR
    AMERICAN JOURNAL OF PHYSICS, 1995, 63 (11) : 1011 - 1014