On the norm of the hyperinterpolation operator on the d-dimensional cube

被引:13
|
作者
Wang, Heping [1 ]
Wang, Kai [2 ]
Wang, Xiaoli [2 ]
机构
[1] Capital Normal Univ, Sch Math Sci, BCMIIS, Beijing 100048, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Hyperinterpolation; Operator norm; Projection; Regular condition; GENERALIZED HYPERINTERPOLATION; APPROXIMATION; SPHERE;
D O I
10.1016/j.camwa.2014.07.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain the asymptotic order of the operator norm of the hyperinterpolation operator on the cube I-d = [-1, 1](d), d >= 2 with respect to the measure d mu(x) = Pi(d)(i=1) dx(i)/pi root 1-x(i)(2). This gives an affirmative answer to a conjecture raised by Caliari et al. (2008). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:632 / 638
页数:7
相关论文
共 50 条
  • [1] On the norm of the hyperinterpolation operator on the unit ball
    Wang, Heping
    Huang, Zexia
    Li, Chunming
    Wei, Lixia
    JOURNAL OF APPROXIMATION THEORY, 2015, 192 : 132 - 143
  • [2] Secret sharing on the d-dimensional cube
    Csirmaz, Laszlo
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 74 (03) : 719 - 729
  • [3] RANDOM POLYTOPES IN THE D-DIMENSIONAL CUBE
    FUREDI, Z
    DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (04) : 315 - 319
  • [4] Secret sharing on the d-dimensional cube
    László Csirmaz
    Designs, Codes and Cryptography, 2015, 74 : 719 - 729
  • [5] On the Linear Separability of Random Points in the d-dimensional Spherical Layer and in the d-dimensional Cube
    Sidorov, S. V.
    Zolotykh, N. Yu.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [6] Large triangles in the d-dimensional unit cube
    Lefmann, Hanno
    THEORETICAL COMPUTER SCIENCE, 2006, 363 (01) : 85 - 98
  • [7] Hyperinterpolation in the cube
    Caliari, Marco
    De Marchi, Stefano
    Vianello, Marco
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (11) : 2490 - 2497
  • [8] Large triangles in the d-dimensional unit-cube
    Lefmann, H
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2004, 3106 : 43 - 52
  • [9] Linear and Fisher Separability of Random Points in the d-Dimensional Spherical Layer and Inside the d-Dimensional Cube
    Sidorov, Sergey
    Zolotykh, Nikolai
    ENTROPY, 2020, 22 (11) : 1 - 20
  • [10] Online packing of d-dimensional boxes into the unit cube
    Janusz Januszewski
    Łukasz Zielonka
    Periodica Mathematica Hungarica, 2020, 81 : 98 - 114