Synthetic CaO-Based Sorbent for CO2 Capture from Large-Point Sources

被引:100
|
作者
Florin, Nicholas H. [1 ]
Blamey, John [1 ]
Fennell, Paul S. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, Grantham Inst Climate Change, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
CARBON-DIOXIDE SEPARATION; FLUIDIZED-BED; CALCIUM-OXIDE; BIOMASS GASIFIERS; HYDROGEN; REACTIVITY; CYCLE; TEMPERATURE;
D O I
10.1021/ef100447c
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The main impetus for future technology development for capturing and purifying CO2 from industrial flue gases is the potential for minimizing the cost of capture and reducing the efficiency penalty that is imposed on the process. Carbonate looping is a very promising future technology, which uses CaO-based solid sorbents, with great potential to reduce the cost of capture and lessen the energy penalty compared to closer to market technologies, e.g., solvent scrubbing. Unfortunately, the CO2-capture capacity of a CaO-sorbent derived from natural limestone decays through long-term capture-and-release cycling; thus, the development of strategies and/or novel sorbents to achieve a high CO2-capture capacity is an important challenge for realizing the cost efficiency of carbonate looping technology. To this end, we report on the development and characterization of a novel synthetic CaO-based sorbent produced via a precipitation method and present experimental results demonstrating improved long-term CO2-capture capacity based on reactivity testing using a thermogravimetric analyzer (TGA) and a bench-scale bubbling fluidized-bed (BFB) reactor. We achieve a capture capacity of about 2.5 times the amount of CO2 after 15 cycles with the synthetic sorbent compared to a natural limestone (Havelock) in the BFB.
引用
收藏
页码:4598 / 4604
页数:7
相关论文
共 50 条
  • [31] Pelletization and attrition of CaO-based adsorbent for CO2 capture
    Zhang, Hao
    Jiang, Tao
    Yaseen, Hamzah A. S. M.
    Zhao, Yujun
    Wang, Shengping
    Ma, Xinbin
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2021, 16 (04)
  • [32] Mechanical Activation of CaO-Based Adsorbents for CO2 Capture
    Sayyah, Maryam
    Lu, Yongqi
    Masel, Richard I.
    Suslick, Kenneth S.
    CHEMSUSCHEM, 2013, 6 (01) : 193 - 198
  • [33] CO2 looping cycles with CaO-based sorbent pretreated in CO2 at high temperature
    Manovic, Vasilije
    Anthony, Edward J.
    Loncarevic, Davor
    CHEMICAL ENGINEERING SCIENCE, 2009, 64 (14) : 3236 - 3245
  • [34] Effect of Sodium Bromide on CaO-Based Sorbents Derived from Three Kinds of Sources for CO2 Capture
    Shen, Cheng
    Luo, Cong
    Luo, Tong
    Xu, Jiaxin
    Lu, Bowen
    Liu, Shaolong
    Zhang, Liqi
    ACS OMEGA, 2020, 5 (29): : 17908 - 17917
  • [35] K2CO3-doped CaO-based sorbent for CO2 capture: Performance studies and promotion mechanisms
    Zang, Pengchao
    Tang, Jiyun
    Tao, Yihui
    Zhang, Hao
    Wang, Xiaozhe
    Cui, Lin
    Chen, Shouyan
    Zhao, Pei
    Dong, Yong
    CHEMICAL ENGINEERING JOURNAL, 2025, 505
  • [36] The Nanofibrous CaO Sorbent for CO2 Capture
    Rodaev, Vyacheslav V.
    Razlivalova, Svetlana S.
    Tyurin, Alexander, I
    Vasyukov, Vladimir M.
    NANOMATERIALS, 2022, 12 (10)
  • [37] CO2 capture performance of CaO-based sorbent modified with torrefaction condensate during calcium looping cycles
    Li, Chongcong
    Gong, Xingli
    Zhang, Hao
    Zhang, Yan
    Yang, Mingjun
    Chen, Bingbing
    CHEMICAL ENGINEERING JOURNAL, 2023, 469
  • [38] Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles
    Manovic, Vasilije
    Anthony, Edward J.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (11) : 4170 - 4174
  • [39] CO2 capture performance of CaO-based sorbent modified with torrefaction condensate during calcium looping cycles
    Li, Chongcong
    Gong, Xingli
    Zhang, Hao
    Zhang, Yan
    Yang, Mingjun
    Chen, Bingbing
    Chemical Engineering Journal, 2023, 469
  • [40] Development of CaO-based sorbent doped with mineral rejects-bauxite-tailings in cyclic CO2 capture
    Hu, Yicheng
    Jia, Qingming
    Shan, Shaoyun
    Li, Sanmei
    Jiang, Lihong
    Wang, Yaming
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2015, 46 : 155 - 159