Discrete breathers in a triangular β-Fermi-Pasta-Ulam-Tsingou lattice

被引:22
|
作者
Babicheva, Rita, I [1 ]
Semenov, Alexander S. [2 ]
Soboleva, Elvira G. [3 ]
Kudreyko, Aleksey A. [4 ]
Zhou, Kun [5 ]
Dmitriev, Sergey, V [6 ,7 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] North Eastern Fed Univ, Polytech Inst Branch Mirny, Tikhonova St 5-1, Mirny 678170, Sakha Republic, Russia
[3] Natl Res Tomsk Polytech Univ, Yurga Inst Technol Branch, Yurga 652050, Russia
[4] Bashkir State Med Univ, Dept Med Phys & Informat, Lenin St 3, Ufa 450008, Russia
[5] Nanyang Technol Univ, Environm Proc Modelling Ctr, Nanyang Environm & Water Res Inst, 1 Cleantech Loop, Singapore 637141, Singapore
[6] RAS, Inst Met Superplast Problems, Khalturin St 39, Ufa 450000, Russia
[7] RAS, Ufa Fed Res Ctr, Inst Mol & Crystal Phys, Ufa 450075, Russia
关键词
INTRINSIC LOCALIZED MODES; 2-DIMENSIONAL MORSE LATTICE; VIBRATIONAL-MODES; MOVING BREATHERS; ATOMIC VIBRATIONS; STABILITY; DYNAMICS; SYMMETRY; BUSHES; MANIPULATION;
D O I
10.1103/PhysRevE.103.052202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A practical approach to the search for (quasi-) discrete breathers (DBs) in a triangular beta-FPUT lattice (after Fermi, Pasta, Ulam, and Tsingou) is proposed. DBs are obtained by superimposing localizing functions on delocalized nonlinear vibrational modes (DNVMs) having frequencies above the phonon spectrum of the lattice. Zero-dimensional and one-dimensional DBs are obtained. The former ones are localized in both spatial dimensions, and the latter ones are only in one dimension. Among the one-dimensional DBs, two families are considered: the first is based on the DNVMs of a triangular lattice, and the second is based on the DNVMs of a chain. We speculate that our systematic approach on the triangular beta-FPUT lattice reveals all possible types of spatially localized oscillations with frequencies bifurcating from the upper edge of the phonon band as all DNVMs with frequencies above the phonon band are analyzed.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Energy cascade and Burgers turbulence in the Fermi-Pasta-Ulam-Tsingou chain
    Gallone, Matteo
    Ponno, Antonio
    Ruffo, Stefano
    PHYSICAL REVIEW E, 2024, 110 (05)
  • [22] Observation of Fermi-Pasta-Ulam-Tsingou Recurrence and Its Exact Dynamics
    Pierangeli, D.
    Flammini, M.
    Zhang, L.
    Marcucci, G.
    Agranat, A. J.
    Grinevich, P. G.
    Santini, P. M.
    Conti, C.
    DelRe, E.
    PHYSICAL REVIEW X, 2018, 8 (04):
  • [23] Analysis of ballistic transport and resonance in the α-Fermi-Pasta-Ulam-Tsingou model
    Bohm, Nathaniel
    Schelling, Patrick K.
    PHYSICAL REVIEW E, 2022, 106 (02)
  • [24] Effective Stochastic Model for Chaos in the Fermi-Pasta-Ulam-Tsingou Chain
    Goldfriend, Tomer
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (04)
  • [25] Effects of weak disorder on the thermalization of Fermi-Pasta-Ulam-Tsingou model
    Sun, Lulu
    Zhang, Zhenjun
    Tong, Peiqing
    NEW JOURNAL OF PHYSICS, 2020, 22 (07):
  • [26] Double Scaling in the Relaxation Time in the β-Fermi-Pasta-Ulam-Tsingou Model
    Lvov, Yuri V.
    Onorato, Miguel
    PHYSICAL REVIEW LETTERS, 2018, 120 (14)
  • [27] Ballistic resonance and thermalization in the Fermi-Pasta-Ulam-Tsingou chain at finite temperature
    Kuzkin, Vitaly A.
    Krivtsov, Anton M.
    PHYSICAL REVIEW E, 2020, 101 (04)
  • [28] Behavior and breakdown of higher-order Fermi-Pasta-Ulam-Tsingou recurrences
    Pace, Salvatore D.
    Campbell, David K.
    CHAOS, 2019, 29 (02)
  • [29] Fermi-Pasta-Ulam-Tsingou recurrence in two-core optical fibers
    Li, J. H.
    Yin, H. M.
    Chiang, K. S.
    Chow, K. W.
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 441
  • [30] Behaviors of thermalization for the Fermi-Pasta-Ulam-Tsingou system with small number of particles*
    Zhang, Zhenjun
    Kang, Jing
    Wen, Wen
    CHINESE PHYSICS B, 2021, 30 (06)