Discrete breathers in a triangular β-Fermi-Pasta-Ulam-Tsingou lattice

被引:22
|
作者
Babicheva, Rita, I [1 ]
Semenov, Alexander S. [2 ]
Soboleva, Elvira G. [3 ]
Kudreyko, Aleksey A. [4 ]
Zhou, Kun [5 ]
Dmitriev, Sergey, V [6 ,7 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] North Eastern Fed Univ, Polytech Inst Branch Mirny, Tikhonova St 5-1, Mirny 678170, Sakha Republic, Russia
[3] Natl Res Tomsk Polytech Univ, Yurga Inst Technol Branch, Yurga 652050, Russia
[4] Bashkir State Med Univ, Dept Med Phys & Informat, Lenin St 3, Ufa 450008, Russia
[5] Nanyang Technol Univ, Environm Proc Modelling Ctr, Nanyang Environm & Water Res Inst, 1 Cleantech Loop, Singapore 637141, Singapore
[6] RAS, Inst Met Superplast Problems, Khalturin St 39, Ufa 450000, Russia
[7] RAS, Ufa Fed Res Ctr, Inst Mol & Crystal Phys, Ufa 450075, Russia
关键词
INTRINSIC LOCALIZED MODES; 2-DIMENSIONAL MORSE LATTICE; VIBRATIONAL-MODES; MOVING BREATHERS; ATOMIC VIBRATIONS; STABILITY; DYNAMICS; SYMMETRY; BUSHES; MANIPULATION;
D O I
10.1103/PhysRevE.103.052202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A practical approach to the search for (quasi-) discrete breathers (DBs) in a triangular beta-FPUT lattice (after Fermi, Pasta, Ulam, and Tsingou) is proposed. DBs are obtained by superimposing localizing functions on delocalized nonlinear vibrational modes (DNVMs) having frequencies above the phonon spectrum of the lattice. Zero-dimensional and one-dimensional DBs are obtained. The former ones are localized in both spatial dimensions, and the latter ones are only in one dimension. Among the one-dimensional DBs, two families are considered: the first is based on the DNVMs of a triangular lattice, and the second is based on the DNVMs of a chain. We speculate that our systematic approach on the triangular beta-FPUT lattice reveals all possible types of spatially localized oscillations with frequencies bifurcating from the upper edge of the phonon band as all DNVMs with frequencies above the phonon band are analyzed.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] q-Breathers in the diatomic β-Fermi-Pasta-Ulam-Tsingou chains
    Deng, Lin
    Yu, Hang
    Zhu, Zhigang
    Fu, Weicheng
    Wang, Yisen
    Huang, Liang
    NEW JOURNAL OF PHYSICS, 2025, 27 (03):
  • [2] Exact discrete resonances in the Fermi-Pasta-Ulam-Tsingou system
    Bustamante, M. D.
    Hutchinson, K.
    Lvov, Y. V.
    Onorato, M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 73 : 437 - 471
  • [3] The β Fermi-Pasta-Ulam-Tsingou recurrence problem
    Pace, Salvatore D.
    Reiss, Kevin A.
    Campbell, David K.
    CHAOS, 2019, 29 (11)
  • [4] Coexistence of Ballistic and Fourier Regimes in the β Fermi-Pasta-Ulam-Tsingou Lattice
    Dematteis, Giovanni
    Rondoni, Lamberto
    Proment, Davide
    De Vita, Francesco
    Onorato, Miguel
    PHYSICAL REVIEW LETTERS, 2020, 125 (02)
  • [6] Periodic orbits in Fermi-Pasta-Ulam-Tsingou systems
    Karve, Nachiket
    Rose, Nathan
    Campbell, David
    CHAOS, 2024, 34 (09)
  • [7] Vortex revivals and Fermi-Pasta-Ulam-Tsingou recurrence
    Paredes, Angel
    Blanco-Labrador, Jose
    Olivieri, David N.
    Salgueiro, Jose R.
    Michinel, Humberto
    PHYSICAL REVIEW E, 2019, 99 (06)
  • [8] Existence of generalized solitary waves for a diatomic Fermi-Pasta-Ulam-Tsingou lattice
    Deng, Shengfu
    Sun, Shu-Ming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 423 : 161 - 196
  • [9] Burgers Turbulence in the Fermi-Pasta-Ulam-Tsingou Chain
    Gallone, Matteo
    Marian, Matteo
    Ponno, Antonio
    Ruffo, Stefano
    PHYSICAL REVIEW LETTERS, 2022, 129 (11)
  • [10] The Metastable State of Fermi-Pasta-Ulam-Tsingou Models
    Reiss, Kevin A. A.
    Campbell, David K. K.
    ENTROPY, 2023, 25 (02)