Robust object tracking using a sparse coadjutant observation model

被引:5
|
作者
Zhao, Jianwei [1 ]
Zhang, Weidong [1 ]
Cao, Feilong [1 ]
机构
[1] China Jiliang Univ, Dept Informat Sci & Math, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Object tracking; Sparse representation; Observation model; Discriminative score model; Generative model; VISUAL TRACKING;
D O I
10.1007/s11042-018-6132-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper develops a classical visual tracker that is called a discriminative sparse similarity (DSS) tracker. Based on the classical Laplacian multi-task reverse sparse representation to get a DSS map in the DSS tracker, we introduce a sparse generative model (SGM) to handle the appearance variation in the DSS tracker. With the alliance of the DSS map and the SGM, our proposed method can track the object under the occlusion and appearance variations effectively. Numerous experiments on various challenging videos of a tracking benchmark illustrate that the proposed tracker performs favorably against several state-of-the-art trackers.
引用
收藏
页码:30969 / 30991
页数:23
相关论文
共 50 条
  • [31] A Robust Appearance Model for Object Tracking
    Li, Yi
    Lu, Xiaohuan
    He, Zhenyu
    Wang, Hongpeng
    Chen, Wen-Sheng
    2016 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA (CCBD), 2016, : 248 - 253
  • [32] Robust Object Tracking via Key Patch Sparse Representation
    He, Zhenyu
    Yi, Shuangyan
    Cheung, Yiu-Ming
    You, Xinge
    Tang, Yuan Yan
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (02) : 354 - 364
  • [33] Robust object tracking with RGBD-based sparse learning
    Zi-ang Ma
    Zhi-yu Xiang
    Frontiers of Information Technology & Electronic Engineering, 2017, 18 : 989 - 1001
  • [34] ROBUST OBJECT TRACKING BY SIMULTANEOUS GENERATION OF AN OBJECT MODEL
    Sagrebin, Maria
    Lorca, Daniel Caparros
    Stroh, Daniel
    Pauli, Josef
    VISAPP 2009: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 2, 2009, : 392 - 397
  • [35] Multi-scale patch-based sparse appearance model for robust object tracking
    Chengjun Xie
    Jieqing Tan
    Peng Chen
    Jie Zhang
    Lei He
    Machine Vision and Applications, 2014, 25 : 1859 - 1876
  • [36] Multi-scale patch-based sparse appearance model for robust object tracking
    Xie, Chengjun
    Tan, Jieqing
    Chen, Peng
    Zhang, Jie
    He, Lei
    MACHINE VISION AND APPLICATIONS, 2014, 25 (07) : 1859 - 1876
  • [37] ROBUST AND SPARSE PORTFOLIO MODEL FOR INDEX TRACKING
    Zhang, Chao
    Wang, Jingjing
    Xiu, Naihua
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2019, 15 (03) : 1001 - 1015
  • [38] Robust Object Tracking Using Unreliable Object Recognizers
    Li, Li
    Mortazavi, Masood
    SIGNAL 2017: THE SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN SIGNAL, IMAGE AND VIDEO PROCESSING, 2017, : 21 - 26
  • [39] Novel Observation Model for Probabilistic Object Tracking
    Liang, Dawei
    Huang, Qingming
    Yao, Hongxun
    Jiang, Shuqiang
    Ji, Rongrong
    Gao, Wen
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 1387 - 1394
  • [40] Partial occlusion robust object tracking using an effective appearance model
    Zhang, Shengping
    Yao, Hongxun
    Liu, Shaohui
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2010, 2010, 7744