Murphy operators in Knot Theory

被引:0
|
作者
Morton, H. R. [1 ]
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
来源
关键词
D O I
10.1142/9789812772527_0031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Murphy operators in the Hecke algebra Hn are commuting elements which arose originally in an algebraic setting in connection with representation theory. They can be represented diagrammatically in a Homfly skein theory version of H-n. Symmetric functions of the Murphy operators are known to lie in the centre of Hn(.) Diagrammatic views of these are given which demonstrate their algebraic properties readily, and how analogous central elements can be constructed diagrammatically in some related algebras.
引用
收藏
页码:359 / 366
页数:8
相关论文
共 50 条
  • [31] THEORY OF PRACTICAL REASON - MURPHY,AE
    PERRY, C
    ETHICS, 1966, 76 (04) : 319 - 322
  • [32] THEORY OF PRACTICAL REASON - MURPHY,AE
    BAYLIS, CA
    PHILOSOPHICAL REVIEW, 1967, 76 (04): : 511 - 515
  • [33] Murphy Operators and the Centre of the Iwahori-Hecke Algebras of Type A
    Andrew Mathas
    Journal of Algebraic Combinatorics, 1999, 9 : 295 - 313
  • [34] ON APPLICATION OF THE JUCYS-MURPHY OPERATORS IN THE HUBBARD MODEL OF SOLIDS
    Jakubczyk, Dorota
    Jakubczyk, Pawel
    Kravets, Yevgen
    REPORTS ON MATHEMATICAL PHYSICS, 2014, 74 (03) : 339 - 346
  • [35] Knot theory in understanding proteins
    Mishra, Rama
    Bhushan, Shantha
    JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 65 (6-7) : 1187 - 1213
  • [36] Knot theory and statistical mechanics
    Wu, FY
    JINGSHIN THEORETICAL PHYSICS SYMPOSIUM IN HONOR OF PROFESSOR TA-YOU WU, 1998, : 146 - 197
  • [37] UNFOLDINGS IN KNOT-THEORY
    NEUMANN, W
    RUDOLPH, L
    MATHEMATISCHE ANNALEN, 1987, 278 (1-4) : 409 - 439
  • [38] BASIC POLYHEDRA IN KNOT THEORY
    Jablan, Slavik V.
    Radovic, Ljiljana M.
    Sazdanovic, Radmila
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2005, 28 : 155 - 164
  • [39] Classical roots of knot theory
    Przytycki, JH
    CHAOS SOLITONS & FRACTALS, 1998, 9 (4-5) : 531 - 545
  • [40] Elements of classical knot theory
    Weber, C
    INTRODUCTION TO THE GEOMETRY AND TOPOLOGY OF FLUID FLOWS, 2001, 47 : 57 - 75