Stokes problem for the generalized Navier-Stokes equations

被引:0
|
作者
Bourchtein, A [1 ]
Bourchtein, L [1 ]
机构
[1] Pelotas State Univ, Dept Math, FAPERGS Sci Fdn, BR-96010900 Pelotas, Brazil
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The generalized Navier-Stokes equations for incompressible viscous flows through isotropic granular porous medium are considered. First Stokes problem is solved applying Laplace transform with respect to time variable and evaluating the inverse transform integrals by the residue calculus. The derived analytical solution includes the classic one as a particular case, that is, it can be obtained from the generalized solution by putting the porosity parameter equal to 1. The use of the derived exact solutions for benchmarking purposes is described.
引用
收藏
页码:813 / 819
页数:7
相关论文
共 50 条
  • [21] On generalized energy equality of the Navier-Stokes equations
    Yasushi Taniuchi
    manuscripta mathematica, 1997, 94 : 365 - 384
  • [22] Generalized boundary equations for conservative Navier-Stokes equations
    Du, Yongle
    AEROSPACE SCIENCE AND TECHNOLOGY, 2019, 86 : 836 - 849
  • [23] NAVIER-STOKES EQUATIONS
    STUART, CA
    QUARTERLY JOURNAL OF MATHEMATICS, 1971, 22 (86): : 309 - &
  • [24] Stokes and Navier-Stokes equations with Navier boundary condition
    Acevedo, Paul
    Amrouche, Cherif
    Conca, Carlos
    Ghosh, Amrita
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (02) : 115 - 119
  • [25] Stokes and Navier-Stokes equations with Navier boundary conditions
    Acevedo Tapia, P.
    Amrouche, C.
    Conca, C.
    Ghosh, A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 285 : 258 - 320
  • [26] ON A FREE BOUNDARY PROBLEM FOR THE NAVIER-STOKES EQUATIONS
    Shibata, Yoshihiro
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2007, 20 (03) : 241 - 276
  • [27] A nonpercolation problem for the stationary Navier-Stokes equations
    Dubinskii, Yu. A.
    DOKLADY MATHEMATICS, 2015, 92 (01) : 476 - 479
  • [28] CAUCHY-PROBLEM FOR NAVIER-STOKES EQUATIONS
    SHINBROT, M
    QUARTERLY JOURNAL OF MATHEMATICS, 1976, 27 (105): : 135 - 137
  • [29] CAUCHY-PROBLEM FOR NAVIER-STOKES EQUATIONS
    SCHNUTE, J
    SHINBROT, M
    QUARTERLY JOURNAL OF MATHEMATICS, 1973, 24 (96): : 457 - 473
  • [30] STOCHASTIC NAVIER-STOKES EQUATIONS ARE A COUPLED PROBLEM
    Rang, Joachim
    Matthies, Hermann G.
    COMPUTATIONAL METHODS IN MARINE ENGINEERING V (MARINE 2013), 2013, : 278 - 288