Analyticity of solutions for quasilinear wave equations and other quasilinear systems

被引:2
|
作者
Kuksin, Sergei [1 ]
Nadirashvili, Nikolai [2 ,3 ]
机构
[1] Univ Paris 07, Unite Format & Rech Math, F-75205 Paris 13, France
[2] CNRS, F-13453 Marseille, France
[3] Univ Aix Marseille 1, Lab Anal Topol & Probabilites, F-13453 Marseille, France
关键词
D O I
10.1017/S0308210512001801
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the persistence of analyticity for classical solutions of the Cauchy problem for quasilinear wave equations with analytic data. Our results show that the analyticity of solutions, stated by the Cauchy-Kowalewski and Ovsiannikov-Nirenberg theorems, lasts until a classical solution exists. Moreover, they show that if the equation and the Cauchy data are analytic only in a part of the space variables, then a classical solution is also analytic in these variables. The approach applies to other quasilinear equations and implies the persistence of the space analyticity (and the partial space analyticity) of their classical solutions.
引用
收藏
页码:1155 / 1169
页数:15
相关论文
共 50 条
  • [41] Quasilinear wave equations and Strichartz estimations
    Bahouri, H
    Chemin, JY
    AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (06) : 1337 - 1377
  • [42] On the formation of shocks for quasilinear wave equations
    Shuang Miao
    Pin Yu
    Inventiones mathematicae, 2017, 207 : 697 - 831
  • [43] On the formation of shocks for quasilinear wave equations
    Miao, Shuang
    Yu, Pin
    INVENTIONES MATHEMATICAE, 2017, 207 (02) : 697 - 831
  • [44] TRIGONOMETRIC INTEGRATORS FOR QUASILINEAR WAVE EQUATIONS
    Gauckler, Ludwig
    Lu, Jianfeng
    Marzuola, Jeremy L.
    Rousset, Frederic
    Schratz, Katharina
    MATHEMATICS OF COMPUTATION, 2019, 88 (316) : 717 - 749
  • [45] Existence of solutions for quasilinear elliptic equations
    doO, JMB
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 207 (01) : 104 - 126
  • [46] ON POSITIVE SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATIONS
    Loc, Nguyen Hoang
    Schmitt, Klaus
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2009, 22 (9-10) : 829 - 842
  • [47] Solutions to quasilinear equations by an iterative method
    Amster, P
    Cassinelli, MM
    Mariani, MC
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2000, 7 (03) : 435 - 441
  • [48] Positive solutions of quasilinear elliptic equations
    Galakhov, EI
    MATHEMATICAL NOTES, 2005, 78 (1-2) : 185 - 193
  • [49] Quasilinear wave equations and dispersion effect
    Bahouri, H
    Chemin, JY
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1999, 1999 (21) : 1141 - 1178
  • [50] Quasilinear wave equations and dispersive effect
    Bahouri, H
    Chemin, JY
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (02): : 117 - 120