Blow-up and critical exponents for nonlinear hyperbolic equations

被引:53
|
作者
Galaktionov, VA
Pohozaev, SI
机构
[1] Univ Bath, Sch Math Sci, Bath BA2 7AY, Avon, England
[2] VA Steklov Math Inst, Moscow 117966, Russia
[3] MV Keldysh Appl Math Inst, Moscow 125047, Russia
关键词
semilinear wave equations; blow-up; energy estimates; critical exponents;
D O I
10.1016/S0362-546X(02)00311-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove nonexistence results for the Cauchy problem for the abstract hyperbolic equation in a Hanach space X, u(u) = f'(u), t > 0; u(0) = u(0), u(t)(0) = u(1), where f : X --> R is a C-1-function. Several applications to the second- and higher-order hyperbolic equations with local and nonlocal nonlinearities are presented. We also describe an approach to Kato's and John's critical exponents for the semilinear equations u(t) = Deltau + b(x, t)\u\(p), p > 1, which are responsible for phenomena of stability, unstability, blow-up and asymptotic behaviour. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:453 / 466
页数:14
相关论文
共 50 条
  • [21] GLOBAL SOLUTIONS AND BLOW-UP FOR A COUPLED SYSTEM OF NONLINEAR HYPERBOLIC EQUATIONS WITH WEAK DAMPING
    Ding, Hang
    Zhou, Jun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (01): : 550 - 572
  • [22] The problem of blow-up in nonlinear parabolic equations
    Galaktionov, VA
    Vázquez, JL
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2002, 8 (02) : 399 - 433
  • [23] Blow-up solutions of nonlinear differential equations
    Chen, YC
    Tsai, LY
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 169 (01) : 366 - 387
  • [24] BLOW-UP IN DAMPED ABSTRACT NONLINEAR EQUATIONS
    Esquivel-Avila, Jorge A.
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (01): : 347 - 367
  • [25] BLOW-UP PHENOMENA FOR NONLINEAR PARABOLIC EQUATIONS
    SLAWIK, L
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (06): : T630 - T632
  • [26] Blow-up for nonlinear heat equations with absorptions
    Zhang, Hailiang
    Guo, Xiulan
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2008, 1 (03): : 33 - 39
  • [28] THE LIMIT OF BLOW-UP DYNAMICS SOLUTIONS FOR A CLASS OF NONLINEAR CRITICAL SCHRODINGER EQUATIONS
    Jean-Jacques, N'takpe
    Blin, L. Boua Sobo
    Halima, Nachid
    Gnowille, Kambire D.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2024, 31 (02): : 207 - 238
  • [29] BLOW-UP IN NONLINEAR SCHROEDINGER EQUATIONS .2. SIMILARITY STRUCTURE OF THE BLOW-UP SINGULARITY
    RYPDAL, K
    RASMUSSEN, JJ
    PHYSICA SCRIPTA, 1986, 33 (06): : 498 - 504
  • [30] Blow-Up of Solutions of Coupled Parabolic Systems and Hyperbolic Equations
    Kalantarova, J., V
    Kalantarov, V. K.
    MATHEMATICAL NOTES, 2022, 112 (3-4) : 406 - 411