Engineering the oleaginous yeast Yarrowia lipolytica for β-farnesene overproduction

被引:39
|
作者
Shi, Tianqiong [1 ]
Li, Yawen [1 ]
Zhu, Li [2 ]
Tong, Yangyang [3 ]
Yang, Junjie [3 ]
Fang, Yunming [4 ]
Wang, Meng [4 ]
Zhang, Jieze [5 ]
Jiang, Yu [6 ,7 ]
Yang, Sheng [3 ,7 ]
机构
[1] Nanjing Normal Univ, Sch Food Sci & Pharmaceut Engn, Nanjing, Peoples R China
[2] Shanghai Laiyi Ctr Biopharmaceut R&D, Shanghai, Peoples R China
[3] Chinese Acad Sci, CAS Ctr Excellence Mol Plant Sci, Key Lab Synthet Biol, 300 Fenglin Rd, Shanghai 200032, Peoples R China
[4] Beijing Univ Chem Technol, Coll Chem Engn, Beijing, Peoples R China
[5] Univ Southern Calif, Dept Chem, Los Angeles, CA 90007 USA
[6] Shanghai Taoyusheng Biotechnol Co Ltd, Shanghai, Peoples R China
[7] Chinese Acad Sci, Shanghai Inst Biol Sci, Huzhou Ctr Ind Biotechnol, Huzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
DAG acyltransferase; fatty acid biosynthesis; metabolic engineering; Yarrowia lipolytica; β ‐ farnesene; BIOSYNTHESIS; EXPRESSION; PATHWAY; METABOLISM; LYCOPENE; SYNTHASE; PRODUCT;
D O I
10.1002/biot.202100097
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
beta-farnesene is a sesquiterpenoid with various industrial applications which is now commercially produced by a Saccharomyces cerevisiae strain obtained by random mutagenesis and genetic engineering. We rationally designed a genetically defined Yarrowia lipolytica through recovery of L-leucine biosynthetic route, gene dosage optimization of beta-farnesene synthase and disruption of the competition pathway. The resulting beta-farnesene titer was improved from 8 to 345 mg L-1. Finally, the strategy for decreasing the lipid accumulation by individually and iteratively knocking out four acyltransferases encoding genes was adopted. The result displayed that beta-farnesene titer in the engineered strain CIBT6304 in which acyltransferases (DGA1 and DGA2) were deleted increased by 45% and reached 539 mg L-1 (88 mg g(-1) DCW). Using fed-batch fermentation, CIBT6304 could produce the highest beta-farnesene titer (22.8 g L-1) among the genetically defined strains. This study will provide the foundation of engineering Y. lipolytica to produce other terpenoids more cost-efficiently.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Engineering Yeast Yarrowia lipolytica for Methanol Assimilation
    Wang, Guokun
    Olofsson-Dolk, Mattis
    Hansson, Frederik Gleerup
    Donati, Stefano
    Li, Xiaolin
    Chang, Hong
    Cheng, Jian
    Dahlin, Jonathan
    Borodina, Irina
    ACS SYNTHETIC BIOLOGY, 2021, 10 (12): : 3537 - 3550
  • [42] Recent Advances in Metabolic Engineering of Yarrowia lipolytica for Lipid Overproduction
    Zeng, Si-Yu
    Liu, Hu-Hu
    Shi, Tian-Qiong
    Song, Ping
    Ren, Lu-Jing
    Huang, He
    Ji, Xiao-Jun
    EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, 2018, 120 (03)
  • [43] Sustainable production of FAEE biodiesel using the oleaginous yeast Yarrowia lipolytica
    Yu, Aiqun
    Zhao, Yu
    Li, Jian
    Li, Shenglong
    Pang, Yaru
    Zhao, Yakun
    Zhang, Cuiying
    Xiao, Dongguang
    MICROBIOLOGYOPEN, 2020, 9 (07):
  • [44] Approaches to improve the lipid synthesis of oleaginous yeast Yarrowia lipolytica: A review
    Bao, Wenjun
    Li, Zifu
    Wang, Xuemei
    Gao, Ruiling
    Zhou, Xiaoqin
    Cheng, Shikun
    Men, Yu
    Zheng, Lei
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 149
  • [45] Genome Sequence of the Oleaginous Yeast Yarrowia lipolytica H222
    Devillers, Hugo
    Neuveglise, Cecile
    MICROBIOLOGY RESOURCE ANNOUNCEMENTS, 2019, 8 (04):
  • [46] Yarrowia lipolytica: Safety assessment of an oleaginous yeast with a great industrial potential
    Groenewald, Marizeth
    Boekhout, Teun
    Neuveglise, Cecile
    Gaillardin, Claude
    van Dijck, Piet W. M.
    Wyss, Markus
    CRITICAL REVIEWS IN MICROBIOLOGY, 2014, 40 (03) : 187 - 206
  • [47] Reconstruction and In Silico Analysis of Metabolic Network for an Oleaginous Yeast, Yarrowia lipolytica
    Pan, Pengcheng
    Hua, Qiang
    PLOS ONE, 2012, 7 (12):
  • [48] Biovalorisation of crude glycerol and xylose into xylitol by oleaginous yeast Yarrowia lipolytica
    Ashish A. Prabhu
    Dominic J. Thomas
    Rodrigo Ledesma-Amaro
    Gary A. Leeke
    Angel Medina
    Carol Verheecke-Vaessen
    Frederic Coulon
    Deepti Agrawal
    Vinod Kumar
    Microbial Cell Factories, 19
  • [49] Biovalorisation of crude glycerol and xylose into xylitol by oleaginous yeast Yarrowia lipolytica
    Prabhu, Ashish A.
    Thomas, Dominic J.
    Ledesma-Amaro, Rodrigo
    Leeke, Gary A.
    Medina, Angel
    Verheecke-Vaessen, Carol
    Coulon, Frederic
    Agrawal, Deepti
    Kumar, Vinod
    MICROBIAL CELL FACTORIES, 2020, 19 (01)
  • [50] Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica
    Fontanille, Pierre
    Kumar, Vinod
    Christophe, Gwendoline
    Nouaille, Regis
    Larroche, Christian
    BIORESOURCE TECHNOLOGY, 2012, 114 : 443 - 449