Braid matrices and quantum gates for Ising anyons topological quantum computation

被引:5
|
作者
Fan, Z. [1 ]
de Garis, H. [2 ]
机构
[1] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China
[2] Xiamen Univ, Dept Comp Sci, Artificial Intelligence Inst, Xiamen, Fujian Province, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL B | 2010年 / 74卷 / 03期
基金
中国国家自然科学基金;
关键词
EXCITED LANDAU-LEVEL; HALL STATE; QUASI-PARTICLE; FIELD-THEORY; UNIVERSAL; QUBITS;
D O I
10.1140/epjb/e2010-00087-4
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study various aspects of the topological quantum computation scheme based on the non-Abelian anyons corresponding to fractional quantum hall effect states at filling fraction 5/2 using the Temperley-Lieb recoupling theory. Unitary braiding matrices are obtained by a normalization of the degenerate ground states of a system of anyons, which is equivalent to a modification of the definition of the 3-vertices in the Temperley-Lieb recoupling theory as proposed by Kauffman and Lomonaco. With the braid matrices available, we discuss the problems of encoding of qubit states and construction of quantum gates from the elementary braiding operation matrices for the Ising anyons model. In the encoding scheme where 2 qubits are represented by 8 Ising anyons, we give an alternative proof of the no-entanglement theorem given by Bravyi and compare it to the case of Fibonacci anyons model. In the encoding scheme where 2 qubits are represented by 6 Ising anyons, we construct a set of quantum gates which is equivalent to the construction of Georgiev.
引用
收藏
页码:419 / 427
页数:9
相关论文
共 50 条
  • [41] Robust gates for holonomic quantum computation
    Florio, G
    Facchi, P
    Fazio, R
    Giovannetti, V
    Pascazio, S
    PHYSICAL REVIEW A, 2006, 73 (02):
  • [42] Design of gates for quantum computation: The not gate
    Mozyrsky, D
    Privman, V
    Hotaling, SP
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (18): : 2207 - 2215
  • [43] Quantum ℛ-Matrices as Universal Qubit Gates
    N. Kolganov
    An. Morozov
    JETP Letters, 2020, 111 : 519 - 524
  • [44] Generalization of common gates for quantum computation
    Ralescu, A
    Mayfield, L
    NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society, 2005, : 611 - 614
  • [45] Exploiting Quantum Gates in Secure Computation
    Ehsanpour, Maryam
    Cimato, Stelvio
    Ciriani, Valentina
    Damiani, Ernesto
    2017 EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD), 2017, : 291 - 294
  • [46] Multivalued logic gates for quantum computation
    Muthukrishnan, A
    Stroud, CR
    PHYSICAL REVIEW A, 2000, 62 (05): : 052309 - 052301
  • [47] DECOMPOSITION OF UNITARY MATRICES AND QUANTUM GATES
    Li, Chi-Kwong
    Roberts, Rebecca
    Yin, Xiaoyan
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2013, 11 (01)
  • [48] Design of Gates for Quantum Computation: The Not Gate
    Mozyrsky, D.
    Privman, V.
    Hotaling, S. P.
    International Journal of Modern Physics B, 11 (18):
  • [49] Nested composite NOT gates for quantum computation
    Jones, Jonathan A.
    PHYSICS LETTERS A, 2013, 377 (40) : 2860 - 2862
  • [50] Universal quantum logic gates in a scalable Ising spin quantum computer
    Mkirtchian, G. F.
    PHYSICS LETTERS A, 2008, 372 (32) : 5270 - 5273