Formation of thermal decomposition cavities in physical vapor transport of silicon carbide

被引:22
|
作者
Sanchez, EK [1 ]
Kuhr, T
Heydemann, VD
Snyder, DW
Rohrer, GS
Skowronski, M
机构
[1] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
[2] II VI Inc, Saxonburg, PA 16056 USA
关键词
silicon carbide; physical vapor transport; macrodefect; thermal decomposition cavities; seed mounting;
D O I
10.1007/s11664-000-0075-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The relationship between seed mounting and the formation of thermal decomposition cavities in physical vapor transport grown silicon carbide was investigated. Scanning electron microscopy, energy dispersive x-ray spectroscopy, Auger electron spectroscopy, and optical microscopy were used to characterize thermal decomposition cavities at various stages of their development. The observations indicate that the attachment layer that holds the seed to the graphite crucible lid frequently contains voids. The seed locally decomposes at void locations and Si-bearing species are transported through the void. The decomposition produces a cavity in the seed; the silicon is deposited on and diffuses into the graphite lid. The formation of thermal decomposition cavities can be suppressed by the application of a diffusion barrier on the seed crystal backside.
引用
收藏
页码:347 / 352
页数:6
相关论文
共 50 条
  • [41] Silicon carbide nanowires suspensions with high thermal transport properties
    Yu, Wei
    Wang, Mingzhu
    Xie, Huaqing
    Hu, Yiheng
    Chen, Lifei
    APPLIED THERMAL ENGINEERING, 2016, 94 : 350 - 354
  • [42] HRTEM characterization of 6H-15R polytype boundaries in silicon carbide grown by physical vapor transport
    Sanchez, EK
    DeGraef, M
    Qian, W
    Skowronski, M
    DEFECTS IN ELECTRONIC MATERIALS II, 1997, 442 : 655 - 660
  • [43] Aluminum p-type doping of silicon carbide crystals using a modified physical vapor transport growth method
    Straubinger, TL
    Bickermann, M
    Weingärtner, R
    Wellmann, PJ
    Winnacker, A
    JOURNAL OF CRYSTAL GROWTH, 2002, 240 (1-2) : 117 - 123
  • [44] Growth of micropipe-free single crystal silicon carbide (SiC) ingots via physical vapor transport (PVT)
    Basceri, C.
    Khlebnikov, I.
    Khlebnikov, Y.
    Muzykov, P.
    Sharma, M.
    Stratiy, G.
    Silan, M.
    Balkas, C.
    SILICON CARBIDE AND RELATED MATERIALS 2005, PTS 1 AND 2, 2006, 527-529 : 39 - +
  • [45] Quasi-ballistic thermal transport in silicon carbide nanowires
    Anufriev, Roman
    Wu, Yunhui
    Volz, Sebastian
    Nomura, Masahiro
    APPLIED PHYSICS LETTERS, 2024, 124 (02)
  • [46] In situ visualization and analysis of silicon carbide physical vapor transport growth using digital X-ray imaging
    Wellmann, PJ
    Bickermann, M
    Hofmann, D
    Kadinski, L
    Selder, M
    Straubinger, TL
    Winnacker, A
    JOURNAL OF CRYSTAL GROWTH, 2000, 216 (1-4) : 263 - 272
  • [47] Photonic Crystal Cavities in Cubic Silicon Carbide
    Radulaski, Marina
    Buckley, Sonia
    Zhang, Linda
    Rundquist, Armand
    Babinec, Thomas M.
    Provinc, J.
    AlAssaad, Kassem
    Ferro, Gabriel
    Vuckovic, Jelena
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [48] Graphene Plasmon Cavities Made with Silicon Carbide
    Li, Ke
    Fitzgerald, Jamie M.
    Xiao, Xiaofei
    Caldwell, Joshua D.
    Zhang, Cheng
    Maier, Stefan A.
    Li, Xiaofeng
    Giannini, Vincenzo
    ACS OMEGA, 2017, 2 (07): : 3640 - 3646
  • [49] Improved thermal conductivity of silicon carbide fibers-reinforced silicon carbide matrix composites by chemical vapor infiltration method
    Tao, Pengfei
    Wang, Yiguang
    CERAMICS INTERNATIONAL, 2019, 45 (02) : 2207 - 2212
  • [50] An Energy Transport Model Describing Electro-Thermal Transport in Silicon Carbide Semiconductors
    Di Stefano, V.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2017, 46 (05) : 379 - 395