Maximum log-likelihood ratio test for a change in three parameter Weibull distribution

被引:7
|
作者
Jaruskova, Daniela [1 ]
机构
[1] Czech Tech Univ, CR-16635 Prague, Czech Republic
关键词
log-likelihood ratio test statistic; asymptotic distribution; strong law of iterated logarithm; Gumbel distribution;
D O I
10.1016/j.jspi.2006.03.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Asymptotic behavior of a log-likelihood ratio statistic for testing a change in a three parameter Weibull distribution is studied. It is shown that if a shape parameter a > 2 the law of iterated logarithm for maximum-likelihood estimators is still valid and the log-likelihood testing statistic is asymptotically distributed (after an appropriate normalization) according to a Gumbel distribution. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1805 / 1815
页数:11
相关论文
共 50 条
  • [31] Geometry of the log-likelihood ratio statistic in misspecified models
    Choi, Hwan-sik
    Kiefer, Nicholas M.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (06) : 2091 - 2099
  • [32] Modified signed log-likelihood ratio test for the scale parameter of the power-law process with applications to repairable systems
    Chumnaul, Jularat
    Sepehrifar, Mohammad
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (08) : 4828 - 4844
  • [33] Generalized selection combining based on the log-likelihood ratio
    Kim, SW
    Kim, YG
    Simon, MK
    2003 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-5: NEW FRONTIERS IN TELECOMMUNICATIONS, 2003, : 2789 - 2794
  • [34] Log-Likelihood Ratio Algorithm for Rate Compatible Modulation
    Rao, Wengui
    Dong, Yan
    Lu, Fang
    Wang, Shu
    2013 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2013, : 1938 - 1941
  • [35] Generalized selection combining based on the log-likelihood ratio
    Kim, SW
    Kim, YG
    Simon, MK
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2004, 52 (04) : 521 - 524
  • [36] A Log-Likelihood Ratio based Generalized Belief Propagation
    Amaricai, Alexandru
    Bahrami, Mohsem
    Vasic, Bane
    PROCEEDINGS OF 18TH INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES (IEEE EUROCON 2019), 2019,
  • [37] Uniqueness of maximum likelihood estimators of the 2-parameter Weibull distribution
    Farnum, NR
    Booth, P
    IEEE TRANSACTIONS ON RELIABILITY, 1997, 46 (04) : 523 - 525
  • [38] Maximum likelihood parameter estimation in the three-parameter log-normal distribution using the continuation method
    Hirose, H
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 24 (02) : 139 - 152
  • [39] Log-Likelihood Ratio Minimizing Flows: Towards Robust and Quantifiable Neural Distribution Alignment
    Usman, Ben
    Sud, Avneesh
    Dufour, Nick
    Saenko, Kate
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [40] Multi-Level Log-Likelihood Ratio Clipping in a Soft-Decision Near-Maximum Likelihood Detector
    Aubert, Sebastien
    Ancora, Andrea
    Nouvel, Fabienne
    ICDT 2011: THE SIXTH INTERNATIONAL CONFERENCE ON DIGITAL TELECOMMUNICATIONS, 2011, : 30 - 35