Higher order global solution and normalized flux for singularly perturbed reaction-diffusion problems

被引:1
|
作者
Bawa, R. K. [1 ]
Clavero, C.
机构
[1] Punjabi Univ, Dept Comp Sci, Patiala 147002, Punjab, India
关键词
Singular perturbation problems; Reaction-diffusion; HOC scheme; Shishkin mesh; Global solution; Global normalized flux;
D O I
10.1016/j.amc.2010.03.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a computational technique is proposed for obtaining a higher order global solution and global normalized flux of singularly perturbed reaction-diffusion two-point boundary-value problems. The HOC (higher order compact) finite difference scheme developed in Gracia et al. (2001) [4] and which is constructed on an appropriate piecewise uniform Shishkin mesh, has been considered to find an almost fourth order convergent solution at mesh points. Using these values, piecewise cubic interpolants based approximations for solution and normalized flux in whole domain have been defined. It has been shown that the global solution and the global normalized flux are also uniformly convergent. Moreover, for the global solution, the order of uniform convergence in the whole domain is optimal, i.e., it is the same as this one obtained at mesh points, whereas, for the global normalized flux, the uniform convergence is almost third order, except at midpoints of the mesh, where it is also almost fourth order. Theoretical error bounds have been provided along with some numerical examples, which corroborate the efficiency of the proposed technique to find good approximations to the global solution and the global normalized flux. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2058 / 2068
页数:11
相关论文
共 50 条