Splitting of energy of dispersive waves in a star-shaped network

被引:13
|
作者
Ali Mehmeti, F [1 ]
Régnier, V [1 ]
机构
[1] Univ Valenciennes & Hainaut Cambresis, MACS, F-59313 Valenciennes 9, France
来源
关键词
waves; Klein-Gordon equation; network; energy flow;
D O I
10.1002/zamm.200310010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study wave and Klein-Gordon equations in a star-shaped network. In the wave case we state a d'Alembert-type solution formula generalizing the formula obtained in Ali Mehmeti [1] and [4] for four branches. In the Klein-Gordon case (dispersive waves) we solve the problem using the Laplace transform with respect to time. We state a continuity equation linking the energy density and the energy flow for the Klein-Gordon equation in a star-shaped network. We observe that the splitting of energy at the central node is the same for propagating waves with and without dispersion.
引用
收藏
页码:105 / 118
页数:14
相关论文
共 50 条
  • [41] On the estimation of a star-shaped set
    Baíllo, A
    Cuevas, A
    ADVANCES IN APPLIED PROBABILITY, 2001, 33 (04) : 717 - 726
  • [42] THE HOYSALA STAR-SHAPED PLAN
    Berkson, Carmel
    MARG-A MAGAZINE OF THE ARTS, 2021, 73 (2-3): : 104 - 105
  • [43] Star-shaped acceptability indexes
    Righi, Marcelo Brutti
    INSURANCE MATHEMATICS & ECONOMICS, 2024, 117 : 170 - 181
  • [44] Star-shaped fluorescent polypeptides
    Klok, HA
    Hernández, JR
    Becker, S
    Müllen, K
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2001, 39 (10) : 1572 - 1583
  • [45] Star-shaped distributions and their generalizations
    Kamiya, Hidehiko
    Takemura, Akimichi
    Kuriki, Satoshi
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (11) : 3429 - 3447
  • [46] Star-shaped stilbenoid phthalocyanines
    Kimura, M
    Narikawa, H
    Ohta, K
    Hanabusa, K
    Shirai, H
    Kobayashi, N
    CHEMISTRY OF MATERIALS, 2002, 14 (06) : 2711 - 2717
  • [47] TRANSMISSION LOSS BUDGET DESIGN OF THE OPTICAL STAR-SHAPED RING NETWORK
    HAKAMATA, Y
    SUEYOSHI, Y
    OKUNO, M
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART I-COMMUNICATIONS, 1994, 77 (05): : 33 - 43
  • [48] Delayed stabilization of the Korteweg–de Vries equation on a star-shaped network
    Hugo Parada
    Emmanuelle Crépeau
    Christophe Prieur
    Mathematics of Control, Signals, and Systems, 2022, 34 : 559 - 605
  • [49] Exponential stability for the nonlinear Schrödinger equation on a star-shaped network
    Kaïs Ammari
    Ahmed Bchatnia
    Naima Mehenaoui
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [50] A nonlinear integral operator encountered in the bandwidth sharing of a star-shaped network
    Fayolle, G
    Lasgouttes, JM
    MATHEMATICS AND COMPUTER SCIENCE: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2000, : 231 - 242