A STUDY ON THE ERROR OF DISTRIBUTED ALGORITHMS FOR BIG DATA CLASSIFICATION WITH SVM

被引:0
|
作者
Wang, Cheng [1 ]
Cao, Feilong [1 ]
机构
[1] China Jiliang Univ, Appl Math Dept, Hangzhou, Zhejiang, Peoples R China
来源
ANZIAM JOURNAL | 2017年 / 58卷 / 3-4期
基金
中国国家自然科学基金;
关键词
distributed algorithm; big data; support vector machine; Tsybakov exponent; geometric noise exponent;
D O I
10.1017/S1446181116000390
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The error of a distributed algorithm for big data classification with a support vector machine (SVM) is analysed in this paper. First, the given big data sets are divided into small subsets, on which the classical SVM with Gaussian kernels is used. Then, the classification error of the SVM for each subset is analysed based on the Tsybakov exponent, geometric noise, and width of the Gaussian kernels. Finally, the whole error of the distributed algorithm is estimated in terms of the error of each subset.
引用
收藏
页码:231 / 237
页数:7
相关论文
共 50 条
  • [31] Developing Anytime SVM Training Algorithms for Large-Scale Data Classification
    Han, Rui
    Ghanem, Moustafa
    Williams, Andreas
    Guo, Yike
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SOFTWARE ENGINEERING (AISE 2014), 2014, : 360 - 366
  • [32] Algorithms for Big Data
    Meyer, Ulrich
    Abedjan, Ziawasch
    IT-INFORMATION TECHNOLOGY, 2020, 62 (3-4): : 117 - 118
  • [33] Distributed FastShapelet Transform: a Big Data time series classification algorithm
    Baldan, Francisco J.
    Benitez, Jose M.
    INFORMATION SCIENCES, 2019, 496 : 451 - 463
  • [34] Distributed Fuzzy Cognitive Maps for Feature Selection in Big Data Classification
    Haritha, K.
    Judy, M., V
    Papageorgiou, Konstantinos
    Georgiannis, Vassilis C.
    Papageorgiou, Elpiniki
    ALGORITHMS, 2022, 15 (10)
  • [35] Parameter optimization of the SVM for Big Data
    Liu, Yunxiang
    Du, Jiongjun
    2015 8TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2015, : 341 - 344
  • [36] Stability-Based Generalization Analysis of Distributed Learning Algorithms for Big Data
    Wu, Xinxing
    Zhang, Junping
    Wang, Fei-Yue
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (03) : 801 - 812
  • [37] Dynamic Distributed and Parallel Machine Learning algorithms for big data mining processing
    Djafri, Laouni
    DATA TECHNOLOGIES AND APPLICATIONS, 2022, 56 (04) : 558 - 601
  • [38] Distributed Principal Subspace Analysis for Partitioned Big Data: Algorithms, Analysis, and Implementation
    Gang, Arpita
    Xiang, Bingqing
    Bajwa, Waheed U.
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2021, 7 : 699 - 715
  • [39] A Study on Garbage Collection Algorithms for Big Data Environments
    Bruno, Rodrigo
    Ferreira, Paulo
    ACM COMPUTING SURVEYS, 2018, 51 (01)
  • [40] Large scale image classification with SVM algorithms
    Doan, Thanh-Nghi
    Do, Thanh-Nghi
    Poulet, François
    Traitement du Signal, 2015, 31 (1-2) : 39 - 56