Crop residue removal and fertilizer N: Effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll

被引:147
|
作者
Lemke, R. L. [1 ]
VandenBygaart, A. J. [2 ]
Campbell, C. A. [2 ]
Lafond, G. P. [3 ]
Grant, B. [2 ]
机构
[1] Agr & Agri Food Canada, Saskatoon Res Ctr, Saskatoon, SK S7N 5A8, Canada
[2] Agr & Agri Food Canada, Eastern Cereal & Oilseed Res Ctr, Ottawa, ON K1A 0C6, Canada
[3] Agr & Agri Food Canada, Indian Head Res Farm, Indian Head, SK S0G 2K0, Canada
关键词
Soil carbon; Wheat; Crop residue; Biofuel; Saskatchewan; Long-term experiment; ICBM; Campbell model; LIFE-CYCLE ASSESSMENT; NITROGEN-FERTILIZATION; MANAGEMENT-PRACTICES; CHEMICAL-PROPERTIES; TILLAGE MANAGEMENT; BLACK CHERNOZEM; SEQUESTRATION; MATTER; STRAW; WHEAT;
D O I
10.1016/j.agee.2009.08.010
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Biofuels can be produced by converting cellulose in crop residues to ethanol. This has recently been viewed as a potential supplement to non-renewable energy sources, especially in the Americas. A 50-yr field experiment was analyzed to determine the influence of (i) removing approximately 22% of the above-ground wheat (Triticum aestivum L.) residue each crop year, and (ii) N and P fertilization on soil carbon (C) in the top 15 cm depth of a fallow-wheat-wheat (F-W-W) rotation. The study was conducted from 1958 to 2007 on a clay soil, at Indian Head in sub-humid southeast Saskatchewan, Canada. Soil C concentrations and bulk densities were measured in the 0-7.5 and 7.5-15 cm depths in 1987, 1996 and 2007 and soil C changes were related to C inputs estimated from straw and root yields Calculated from regressions relating these to grain yields. Two soil organic matter models [the Campbell model and the Introductory Carbon Balance Model (ICBM)] were also used to simulate and predict the effects of the treatments on soil C change over time, and to estimate likely soil C change if 50% or 95% of above-ground residues were harvested each crop year. Crop residue removal reduced cumulative C inputs from straw and roots over the 50-yr experiment by only 13%, and this did not significantly (P > 0.05) reduce soil C throughout the experiment duration. However, after 50 yr of applying N fertilizer at recommended rates, soil C increased significantly by about 3 Mg ha(-1) compared to the non-fertilized treatment. The simulated effect of removing 50% and 95% of the above-ground residues suggested that removing 50% of the straw would likely have a detectable effect on the soil C, while removing 95% of the straw certainly would. Measurements and model simulations suggest that adoption of no-tillage Without proper fertilization will not increase soil C. Although it appears that a modest amount of residue may be safely removed from these Udic Borolls (Black Chernozems) without a measurable effect on soil C, this would only be feasible if accompanied by appropriate fertility management. Crown Copyright (c) 2009 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 51
页数:10
相关论文
共 50 条
  • [31] Effects of crop rotation, crop type and tillage on soil organic carbon in a semiarid climate
    Shrestha, B. M.
    McConkey, B. G.
    Smith, W. N.
    Desjardins, R. L.
    Campbell, C. A.
    Grant, B. B.
    Miller, P. R.
    CANADIAN JOURNAL OF SOIL SCIENCE, 2013, 93 (01) : 137 - 146
  • [32] LONG-TERM CROP ROTATION AND CONTINUOUS CROPPING EFFECTS ON SOIL CHEMICAL PROPERTIES
    Kostrzewska, Marta K.
    Jastrzebska, Magdalena
    Marks, Marek
    Jastrzebski, Wieslaw P.
    JOURNAL OF ELEMENTOLOGY, 2022, 27 (02): : 335 - 349
  • [33] Long-term tillage and crop rotation effects on soil chemical and mineral properties
    Hickman, MV
    JOURNAL OF PLANT NUTRITION, 2002, 25 (07) : 1457 - 1470
  • [34] Soil microbial activity and crop sustainability in a long-term experiment with three soil-tillage and two crop-rotation systems
    Hungria, Mariangela
    Franchini, Julio Cezar
    Brandao-Junior, Osvaldino
    Kaschuk, Glaciela
    Souza, Rosinei Aparecida
    APPLIED SOIL ECOLOGY, 2009, 42 (03) : 288 - 296
  • [35] Long-term management effects on plant N uptake and topsoil carbon levels in Swedish long-term field experiments:: cereals and ley, crop residue treatment and fertilizer N application
    Röing, K
    Andrén, O
    Mattsson, L
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2005, 55 (01): : 16 - 22
  • [36] Soil aggregate-associated organic carbon and nitrogen response to long-term no-till crop rotation, cover crop, and manure application
    Bansal, Sangeeta
    Yin, Xinhua
    Sykes, Virginia
    Lee, Jaehoon
    Jagadamma, Sindhu
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2021, 85 (06) : 2169 - 2184
  • [37] IMPACT OF LONG-TERM TILLAGE AND CROP ROTATION ON CONCENTRATION OF SOIL PARTICULATE ORGANIC MATTER ASSOCIATED CARBON AND NITROGEN
    Aziz, Irfan
    Mahmood, Tariq
    Islam, Khandakar Rafiq
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2014, 51 (04): : 827 - 834
  • [38] Long-term crop rotation and tillage effects on soil greenhouse gas emissions and crop production in Illinois, USA
    Behnke, Gevan D.
    Zuber, Stacy M.
    Pittelkow, Cameron M.
    Nafziger, Emerson D.
    Villamil, Maria B.
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2018, 261 : 62 - 70
  • [39] Effects of long-term fertilizer phosphorus application on soil and crop phosphorus and cadmium contents
    Richards, IR
    Clayton, CJ
    Reeve, AJK
    JOURNAL OF AGRICULTURAL SCIENCE, 1998, 131 : 187 - 195
  • [40] Long-term modelling of soil N mineralization and N fate using STICS in a 34-year crop rotation experiment
    Yin, Xiaogang
    Beaudoin, Nicolas
    Ferchaud, Fabien
    Mary, Bruno
    Strullu, Loic
    Chlebowski, Florent
    Clivot, Hugues
    Herre, Christian
    Duval, Jerome
    Louarn, Gaetan
    GEODERMA, 2020, 357