On Solutions of Backward Stochastic Volterra Integral Equations with Jumps in Hilbert Spaces

被引:33
|
作者
Ren, Y. [1 ]
机构
[1] Univ Tasmania, Sch Math, Hobart, Tas 7001, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Backward stochastic Volterra integral equation; Adapted M-solution; Poisson point process; Duality principle; DIFFERENTIAL-EQUATIONS; ADAPTED SOLUTION; LEVY PROCESSES; DRIVEN; PDIES;
D O I
10.1007/s10957-009-9596-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper studies the existence, uniqueness and stability of the adapted solutions to backward stochastic Volterra integral equations (BSVIEs) driven by a cylindrical Brownian motion on a separable Hilbert space and a Poisson random measure with non-Lipschitz coefficient. Moreover, a duality principle between the linear forward stochastic Volterra integral equations (FSVIEs) with jumps and the linear BSVIEs with jumps is established.
引用
收藏
页码:319 / 333
页数:15
相关论文
共 50 条
  • [21] On a class of backward stochastic Volterra integral equations
    Djordjevic, Jasmina
    Jankovic, Svetlana
    APPLIED MATHEMATICS LETTERS, 2013, 26 (12) : 1192 - 1197
  • [22] Linear Volterra backward stochastic integral equations
    Hu, Yaozhong
    Oksendal, Bernt
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (02) : 626 - 633
  • [23] Backward stochastic differential equations and backward stochastic Volterra integral equations with anticipating generators
    Hanxiao Wang
    Jiongmin Yong
    Chao Zhou
    Probability,Uncertainty and Quantitative Risk, 2022, (04) : 301 - 332
  • [24] Backward stochastic differential equations and backward stochastic Volterra integral equations with anticipating generators
    Wang, Hanxiao
    Yong, Jiongmin
    Zhou, Chao
    PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK, 2022, 7 (04) : 301 - 332
  • [25] Path-dependent backward stochastic Volterra integral equations with jumps, differentiability and duality principle
    Overbeck, Ludger
    Roeder, Jasmin A. L.
    PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK, 2018, 3
  • [26] EXISTENCE AND UNIQUENESS OF M-SOLUTIONS FOR BACKWARD STOCHASTIC VOLTERRA INTEGRAL EQUATIONS
    Li, Wenxue
    Wu, Ruihua
    Wang, Ke
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [27] Backward stochastic Volterra integral equations on Markov chains
    Wei, Jiaqin
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2018, 90 (04) : 605 - 639
  • [28] Backward stochastic Volterra integral equations with additive perturbations
    Djordjevic, Jasmina
    Jankovic, Svetlana
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 265 : 903 - 910
  • [29] Approximation approach for backward stochastic Volterra integral equations
    Yao, Kutorzi Edwin
    Samar, Mahvish
    Shi, Yufeng
    MATHEMATICAL MODELLING AND CONTROL, 2024, 4 (04): : 390 - 399
  • [30] Solvability of anticipated backward stochastic Volterra integral equations
    Wen, Jiaqiang
    Shi, Yufeng
    STATISTICS & PROBABILITY LETTERS, 2020, 156