Real-time determination of earthquake focal mechanism via deep learning

被引:85
|
作者
Kuang, Wenhuan [1 ]
Yuan, Congcong [2 ]
Zhang, Jie [3 ]
机构
[1] Stanford Univ, Dept Geophys, Stanford, CA 94305 USA
[2] Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA
[3] Univ Sci & Technol China, Dept Geophys, Hefei 230026, Anhui, Peoples R China
基金
国家重点研发计划;
关键词
SOURCE PARAMETERS; STRESS; AFTERSHOCKS; SEISMOLOGY; SINGLE;
D O I
10.1038/s41467-021-21670-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An immediate report of the source focal mechanism with full automation after a destructive earthquake is crucial for timely characterizing the faulting geometry, evaluating the stress perturbation, and assessing the aftershock patterns. Advanced technologies such as Artificial Intelligence (AI) has been introduced to solve various problems in real-time seismology, but the real-time source focal mechanism is still a challenge. Here we propose a novel deep learning method namely Focal Mechanism Network (FMNet) to address this problem. The FMNet trained with 787,320 synthetic samples successfully estimates the focal mechanisms of four 2019 Ridgecrest earthquakes with magnitude larger than Mw 5.4. The network learns the global waveform characteristics from theoretical data, thereby allowing the extensive applications of the proposed method to regions of potential seismic hazards with or without historical earthquake data. After receiving data, the network takes less than two hundred milliseconds for predicting the source focal mechanism reliably on a single CPU. The authors here present a deep learning method to determine the source focal mechanism of earthquakes in realtime. They trained their network with approximately 800k synthetic samples and managed to successfully estimate the focal mechanism of four 2019 Ridgecrest earthquakes with magnitudes larger than Mw 5.4.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Preprocessing via Deep Learning for Enhancing Real-Time Performance of Object Detection
    Liu, Yu
    Kang, Kyoung-Don
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [22] Real-time guidance for powered landing of reusable rockets via deep learning
    Jinbo Wang
    Hongjun Ma
    Huixu Li
    Hongbo Chen
    Neural Computing and Applications, 2023, 35 : 6383 - 6404
  • [23] Real-time guidance for powered landing of reusable rockets via deep learning
    Wang, Jinbo
    Ma, Hongjun
    Li, Huixu
    Chen, Hongbo
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (09): : 6383 - 6404
  • [24] Real-time noise cancellation with deep learning
    Porr, Bernd
    Daryanavard, Sama
    Bohollo, Lucia Munoz
    Cowan, Henry
    Dahiya, Ravinder
    PLOS ONE, 2022, 17 (11):
  • [25] Real-Time Surveillance Using Deep Learning
    Iqbal, Muhammad Javed
    Iqbal, Muhammad Munwar
    Ahmad, Iftikhar
    Alassafi, Madini O.
    Alfakeeh, Ahmed S.
    Alhomoud, Ahmed
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [26] A Real-Time Deep Learning OFDM Receiver
    Brennsteiner, Stefan
    Arslan, Tughrul
    Thompson, John
    McCormick, Andrew
    ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS, 2022, 15 (03)
  • [27] Deep Learning for Real-time Applications: A Survey
    Zhang Z.-K.
    Pang W.-G.
    Xie W.-J.
    Lü M.-S.
    Wang Y.
    Zhang, Zheng-Kui (zhangzhengkui@cse.neu.edu.cn), 1600, Chinese Academy of Sciences (31): : 2654 - 2677
  • [28] Real-Time Earthquake Early Warning With Deep Learning: Application to the 2016 M 6.0 Central Apennines, Italy Earthquake
    Zhang, Xiong
    Zhang, Miao
    Tian, Xiao
    GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (05)
  • [29] TTDeep: Time-Triggered Scheduling for Real-Time Ethernet via Deep Reinforcement Learning
    Jia, Hongyu
    Jiang, Yu
    Zhong, Chunmeng
    Wan, Hai
    Zhao, Xibin
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [30] Prediction of response spectra via real-time earthquake measurements
    Convertito, Vincenzo
    Iervolino, Iunio
    Zollo, Aldo
    Manfredi, Gaetano
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2008, 28 (06) : 492 - 505