ON THE HYERS-ULAM SOLUTION AND STABILITY PROBLEM FOR GENERAL SET-VALUED EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS

被引:1
|
作者
Zhang, Dongwen [1 ]
Rassias, John Michael [1 ,2 ]
Li, Yongjin [3 ]
机构
[1] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Peoples R China
[2] Natl & Kapodistrian Univ Athens, Dept Math & Informat, Attikis 15342, Greece
[3] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
来源
KOREAN JOURNAL OF MATHEMATICS | 2022年 / 30卷 / 04期
基金
中国国家自然科学基金;
关键词
Hyers-Ulam-Rassias stability; Hausdorff distance; Approximation; Set-valued functional equations; The fixed point alternative theorem; The Euler-Lagrange set-valued functional equation; RASSIAS STABILITY;
D O I
10.11568/kjm.2022.30.4.571
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By established a Banach space with the Hausdorff distance, we intro-duce the alternative fixed-point theorem to explore the existence and uniqueness of a fixed subset of Y and investigate the stability of set-valued Euler-Lagrange functional equations in this space. Some properties of the Hausdorff distance are furthermore explored by a short and simple way.
引用
收藏
页码:571 / 592
页数:22
相关论文
共 50 条