Tensor Graph Attention Network for Knowledge Reasoning in Internet of Things

被引:6
|
作者
Yang, Jing [1 ]
Yang, Laurence T. [1 ,2 ]
Wang, Hao [1 ]
Gao, Yuan [1 ]
Liu, Huazhong [3 ]
Xie, Xia [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China
[2] St Francis Xavier Univ, Dept Comp Sci, Antigonish, NS B2G 2W5, Canada
[3] Hainan Univ, Sch Comp Sci & Technol, Haikou 570000, Hainan, Peoples R China
基金
中国国家自然科学基金;
关键词
Tensors; Internet of Things; Knowledge engineering; Computer science; Semantics; Graph neural networks; Task analysis; Graph neural network; graph representation learning; Internet of Things (IoT); knowledge graph; knowledge reasoning; link prediction; tensor; tensor decomposition; tensor operations;
D O I
10.1109/JIOT.2021.3092360
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge graph builds the bridge from massive data generated by the interaction and communication between various objects to intelligent applications and services in Internet of Things. The graph representation learning technology represented by graph neural networks plays an essential role in the understanding and reasoning of the knowledge graph with complicated internal structure. Although they are capable of assigning different attention weights to neighbors, the graph attention network (GAT) and its variants are inherently flawed and inadequate in modeling high-order knowledge graphs with high heterogeneity. Therefore, we propose a novel multirelational GAT framework in this article for knowledge reasoning over heterogeneous graphs by employing tensor and tensor operations. Specifically, we formulate the general high-order heterogeneous knowledge graph first. Then, the tensor GAT (TGAT), composed of three components: 1) heterogeneous information propagation; 2) multimodal semantic-aware attention; and 3) knowledge aggregation, is developed to simulate rich interactions between mixed triples, entities, and relationships when aggregating local information. What is more, we utilize the Tucker model to compress the parameters of TGAT and further reduce the storage and calculation consumption of the intermediate calculation process on the premise of maintaining the expressive power. We conduct extensive experiments to solve the link prediction task on four real-world heterogeneous graphs, and the results demonstrate that the TGAT model proposed in this article remarkably outperforms state-of-the-art competitors and improves the hits@1 accuracy by up to 7.6%.
引用
收藏
页码:9128 / 9137
页数:10
相关论文
共 50 条
  • [1] Hierarchical graph attention network for temporal knowledge graph reasoning
    Shao, Pengpeng
    He, Jiayi
    Li, Guanjun
    Zhang, Dawei
    Tao, Jianhua
    NEUROCOMPUTING, 2023, 550
  • [2] HyGGE: Hyperbolic graph attention network for reasoning over knowledge graphs
    Wang, Yuzhuo
    Wang, Hongzhi
    Lu, Wenbo
    Yan, Yu
    INFORMATION SCIENCES, 2023, 630 : 190 - 205
  • [3] Gated Tree-based Graph Attention Network (GTGAT) for medical knowledge graph reasoning
    Jiang, Jingchi
    Wang, Tao
    Wang, Boran
    Ma, Linjiang
    Guan, Yi
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2022, 130
  • [4] DA-Net: Distributed Attention Network for Temporal Knowledge Graph Reasoning
    Liu, Kangzheng
    Zhao, Feng
    Chen, Hongxu
    Li, Yicong
    Xu, Guandong
    Jin, Hai
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1289 - 1298
  • [5] A Time-Aware Graph Attention Network for Temporal Knowledge Graphs Reasoning
    Cao, Shuxin
    Liu, Chengwei
    Zhu, Xiaoxu
    Li, Peifeng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT IV, 2023, 14089 : 40 - 51
  • [6] Graph Intention Neural Network for Knowledge Graph Reasoning
    Jiang, Weihao
    Fu, Yao
    Zhao, Hong
    Wan, Junhong
    Pu, Shiliang
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [7] Knowledge Reasoning Based on Neural Tensor Network
    Huang, Jian-Hui
    Huang, Jiu-Ming
    Li, Ai-Ping
    Tong, Yong-Zhi
    4TH ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS (ITA 2017), 2017, 12
  • [8] ConvHiA: convolutional network with hierarchical attention for knowledge graph multi-hop reasoning
    Dengao Li
    Shuyi Miao
    Baofeng Zhao
    Yu Zhou
    Ding Feng
    Jumin Zhao
    Xupeng Niu
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 2301 - 2315
  • [9] ConvHiA: convolutional network with hierarchical attention for knowledge graph multi-hop reasoning
    Li, Dengao
    Miao, Shuyi
    Zhao, Baofeng
    Zhou, Yu
    Feng, Ding
    Zhao, Jumin
    Niu, Xupeng
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (07) : 2301 - 2315
  • [10] Neural axiom network for knowledge graph reasoning
    Li, Juan
    Chen, Xiangnan
    Yu, Hongtao
    Chen, Jiaoyan
    Zhang, Wen
    SEMANTIC WEB, 2024, 15 (03) : 777 - 792