Gated Tree-based Graph Attention Network (GTGAT) for medical knowledge graph reasoning

被引:8
|
作者
Jiang, Jingchi [1 ]
Wang, Tao [1 ]
Wang, Boran [2 ]
Ma, Linjiang [1 ]
Guan, Yi [1 ]
机构
[1] Harbin Inst Technol, Dept Comp Sci & Technol, Harbin, Peoples R China
[2] Harbin Inst Technol, Dept Comp Sci & Technol, Shenzhen, Peoples R China
关键词
Medical knowledge graph; Graph attention network; Disease diagnosis;
D O I
10.1016/j.artmed.2022.102329
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graph (KG) is a multi-relational data that has proven valuable for many tasks including decision making and semantic search. In this paper, we present GTGAT (Gated Tree-based Graph Attention), a method for tackling the problems of transductive and inductive reasoning in generalized KGs. Based on recent advancement of graph attention network (GAT), we develop a gated tree-based method to distill valuable information in neighborhood via hierarchical-aware and semantic-aware attention mechanism. Our approach not only addresses several key challenges of GAT but is also capable of undertaking multiple downstream tasks. Experimental results have revealed that our proposed GTGAT has matched state-of-the-art approaches across transductive benchmarks on the Cora, Citeseer, and electronic medical record networks (EMRNet). Meanwhile, the inductive experiments on medical knowledge graphs show that GTGAT surpasses the best competing methods for personalized disease diagnosis.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Hierarchical graph attention network for temporal knowledge graph reasoning
    Shao, Pengpeng
    He, Jiayi
    Li, Guanjun
    Zhang, Dawei
    Tao, Jianhua
    NEUROCOMPUTING, 2023, 550
  • [2] Knowledge graph completion based on graph contrastive attention network
    Liu D.
    Fang Q.
    Zhang X.
    Hu J.
    Qian S.
    Xu C.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (08): : 1428 - 1435
  • [3] Tensor Graph Attention Network for Knowledge Reasoning in Internet of Things
    Yang, Jing
    Yang, Laurence T.
    Wang, Hao
    Gao, Yuan
    Liu, Huazhong
    Xie, Xia
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (12) : 9128 - 9137
  • [4] A gated graph attention network based on dual graph convolution for node embedding
    Ruowang Yu
    Lanting Wang
    Yu Xin
    Jiangbo Qian
    Yihong Dong
    Applied Intelligence, 2023, 53 : 19962 - 19975
  • [5] A gated graph attention network based on dual graph convolution for node embedding
    Yu, Ruowang
    Wang, Lanting
    Xin, Yu
    Qian, Jiangbo
    Dong, Yihong
    APPLIED INTELLIGENCE, 2023, 53 (17) : 19962 - 19975
  • [6] Heterogeneous Graph Gated Attention Network
    Ma, Shuai
    Liu, Jian-wei
    Zuo, Xin
    Li, Wei-min
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [7] Graph Intention Neural Network for Knowledge Graph Reasoning
    Jiang, Weihao
    Fu, Yao
    Zhao, Hong
    Wan, Junhong
    Pu, Shiliang
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [8] Incorporating Graph Attention Mechanism into Knowledge Graph Reasoning Based on Deep Reinforcement Learning
    Wang, Heng
    Li, Shuangyin
    Pan, Rong
    Mao, Mingzhi
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 2623 - 2631
  • [9] HyGGE: Hyperbolic graph attention network for reasoning over knowledge graphs
    Wang, Yuzhuo
    Wang, Hongzhi
    Lu, Wenbo
    Yan, Yu
    INFORMATION SCIENCES, 2023, 630 : 190 - 205
  • [10] Tree-Based Genealogical Graph Layout
    Marik, Radek
    GRAPH DRAWING AND NETWORK VISUALIZATION (GD 2016), 2016, 9801 : 613 - 616