The Stability of Solution Set to η-Set-valued Weak Vector Variational Inequality Problem

被引:0
|
作者
Jia, Jing [1 ]
Yin, Shuifang [2 ]
Bu, Changchang [2 ]
机构
[1] Wuhan Univ Sci & Technol, Hubei Prov Key Lab Syst Sci Met Proc, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430081, Peoples R China
关键词
set-valued weak vector variational inequality; Upper semi-continuity; eta-weak C pseudo-monotone; v-semicontinuous; NONREFLEXIVE BANACH-SPACES; OPERATORS;
D O I
10.4028/www.scientific.net/AMM.668-669.1134
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we discuss the upper semi-continuity of the solution to parameter eta-Set-valued weak vector variational inequality problem. We show that the operator of parameter eta-Set-valued weak vector variational inequality is not continuous, but it satisfies nu-semicontinuous and eta-weak C pseudo-monotone. Our results generalize the previous results in the literature.
引用
收藏
页码:1134 / +
页数:3
相关论文
共 50 条
  • [41] Continuity of Solution Mappings for Parametric Generalized Set-Valued Weak Vector Equilibrium Problems
    PENG Zaiyun
    ZHAO Yong
    YANG Xinmin
    JournalofSystemsScience&Complexity, 2017, 30 (02) : 378 - 391
  • [42] Continuity of solution mappings for parametric generalized set-valued weak vector equilibrium problems
    Zaiyun Peng
    Yong Zhao
    Xinmin Yang
    Journal of Systems Science and Complexity, 2017, 30 : 378 - 391
  • [43] Continuity of Solution Mappings for Parametric Generalized Set-Valued Weak Vector Equilibrium Problems
    Peng Zaiyun
    Zhao Yong
    Yang Xinmin
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2017, 30 (02) : 378 - 391
  • [44] Semicontinuity of Approximate Solution Mappings to Parametric Set-Valued Weak Vector Equilibrium Problems
    Peng, Z. Y.
    Zhao, Y.
    Yang, X. M.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (04) : 481 - 500
  • [45] Stability of the solution set of a noncoervive variational inequality
    Adly, S
    Ernst, E
    Théra, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (05): : 409 - 414
  • [46] Approximation of an Inertial Iteration Method for a Set-Valued Quasi Variational Inequality
    Mohammad A.
    Iraqi Journal for Computer Science and Mathematics, 2024, 5 (02): : 68 - 80
  • [47] Generalized Implicit Set-Valued Variational Inclusion Problem with ⊕ Operation
    Ahmad, Rais
    Ali, Imran
    Husain, Saddam
    Latif, A.
    Wen, Ching-Feng
    MATHEMATICS, 2019, 7 (05)
  • [48] Scalarization approaches for set-valued vector optimization problems and vector variational inequalities
    Guu, Sy-Ming
    Huang, Nan-Jing
    Li, Jun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) : 564 - 576
  • [49] Proper efficiency for set-valued vector optimization problems and vector variational inequalities
    Liu, W
    Gong, XH
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2000, 51 (03) : 443 - 457
  • [50] Set-valued quasi variational inclusions
    Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, Canada
    Journal of Applied Mathematics and Computing, 2000, 7 (01) : 101 - 113