On the rate of convergence of optimal solutions of Monte Carlo approximations of stochastic programs

被引:167
|
作者
Shapiro, A [1 ]
Homem-De-Mello, T
机构
[1] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[2] Ohio State Univ, Dept Ind Welding & Syst Engn, Columbus, OH 43210 USA
关键词
two-stage stochastic programming with recourse; Monte Carlo simulation; large deviations theory; convex analysis;
D O I
10.1137/S1052623498349541
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss Monte Carlo simulation based approximations of a stochastic programming problem. We show that if the corresponding random functions are convex piecewise linear and the distribution is discrete, then an optimal solution of the approximating problem provides an exact optimal solution of the true problem with probability one for sufficiently large sample size. Moreover, by using the theory of large deviations, we show that the probability of such an event approaches one exponentially fast with increase of the sample size. In particular, this happens in the case of linear two- ( or multi-) stage stochastic programming with recourse if the corresponding distributions are discrete. The obtained results suggest that, in such cases, Monte Carlo simulation based methods could be very efficient. We present some numerical examples to illustrate the ideas involved.
引用
收藏
页码:70 / 86
页数:17
相关论文
共 50 条