Techno-Economic Assessment of Soiling Losses and Mitigation Strategies for Solar Power Generation

被引:236
|
作者
Ilse, Klemens [1 ,2 ,3 ,4 ]
Micheli, Leonardo [5 ]
Figgis, Benjamin W. [6 ]
Lange, Katja [1 ,2 ]
Dassler, David [1 ,2 ]
Hanifi, Hamed [1 ,2 ]
Wolfertstetter, Fabian [7 ]
Naumann, Volker [1 ,2 ]
Hagendorf, Christian [1 ,2 ]
Gottschalg, Ralph [1 ,2 ,3 ]
Bagdahn, Joerg [3 ]
机构
[1] Fraunhofer Ctr Silicon Photovolta CSP, D-06120 Halle, Saale, Germany
[2] Fraunhofer Inst Microstruct Mat & Syst IMWS, D-06120 Halle, Saale, Germany
[3] Anhalt Univ Appl Sci, Fac EMW, Kothen, Anhalt, Germany
[4] Martin Luther Univ Halle Wittenberg, Inst Phys, D-06120 Halle, Saale, Germany
[5] Univ Jaen, Ctr Adv Studies Energy & Environm CEAEMA, Jaen 23071, Spain
[6] HBKU, QEERI, Doha, Qatar
[7] Inst Solar Res, German Aerosp Ctr DLR, Plataforma Solar Almeria, Tabernas 04200, Spain
基金
欧盟地平线“2020”;
关键词
DUST DEPOSITION; AIRBORNE DUST; TIME-SERIES; ENERGY; SYSTEMS; MIRROR; PERFORMANCE; GLASS; REFLECTANCE; DESERT;
D O I
10.1016/j.joule.2019.08.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Soiling consists of the deposition of contaminants onto photovoltaic (PV) modules or mirrors and tubes of concentrated solar power systems (CSPs). It often results in a drastic reduction of power generation, which potentially renders an installation economically unviable and therefore must be mitigated. On the other hand, the corresponding costs for cleaning can significantly increase the price of energy generated. In this work, the importance of soiling is assessed for the global PV and CSP key markets. Even in optimized cleaning scenarios, soiling reduces the current global solar power production by at least 3%-4%, with at least 3-5 billion V annual revenue losses, which could rise to 4%-7%, and more than 4-7 billion V losses, in 2023. Therefore, taking into account the underlying physics of natural soiling processes and the regional cleaning costs, a techno-economic assessment of current and proposed soiling mitigation strategies such as innovative coating materials is presented. Accordingly, the research and development needs and challenges in addressing soiling are discussed.
引用
收藏
页码:2303 / 2321
页数:19
相关论文
共 50 条
  • [41] Techno-economic impact of solar power system integration on a DSO
    Nigmatulina, Nelli
    Mashlakov, Aleksei
    Belonogova, Nadezda
    Honkapuro, Samuli
    2020 17TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM, 2020,
  • [42] Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation
    Koberle, Alexandre C.
    Gernaat, David E. H. J.
    van Vuuren, Detlef P.
    ENERGY, 2015, 89 : 739 - 756
  • [43] The Techno-Economic Feasibility of Providing Solar Photovoltaic Backup Power
    Pillai, G.
    Hodgson, J.
    Insaurralde, C. C.
    Pinitjitsamut, M.
    Deepa, S.
    2016 IEEE INTERNATIONAL SYMPOSIUM ON TECHNOLOGY AND SOCIETY (ISTAS), 2016, : 62 - 67
  • [44] Techno-economic optimization for the design of solar chimney power plants
    Ali, Babkir
    ENERGY CONVERSION AND MANAGEMENT, 2017, 138 : 461 - 473
  • [45] Optimal design and techno-economic analysis of a hybrid solar-wind power generation system
    Yang Hongxing
    Zhou Wei
    Lou Chengzhi
    APPLIED ENERGY, 2009, 86 (02) : 163 - 169
  • [46] A geospatial assessment of the techno-economic wind and solar potential of Mongolia
    Harrucksteiner, Alexander
    Thakur, Jagruti
    Franke, Katja
    Sensfuss, Frank
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 55
  • [47] Silicon heterojunction solar cells: Techno-economic assessment and opportunities
    Razzaq, Arsalan
    Allen, Thomas G.
    Liu, Wenzhu
    Liu, Zhengxin
    De Wolf, Stefaan
    JOULE, 2022, 6 (03) : 514 - 542
  • [48] Techno-economic assessment of a hybrid connected PV solar system
    Hasan Falih
    Ahmed J. Hamed
    Abdul Hadi N. Khalifa
    International Journal of Air-Conditioning and Refrigeration, 30
  • [49] Techno-Economic Analysis of Solar Tower Aided Coal-Fired Power Generation System
    Zhu, Yong
    Zhai, Rongrong
    Yang, Yongping
    Angel Reyes-Belmonte, Miguel
    ENERGIES, 2017, 10 (09):
  • [50] Techno-economic assessment of a hybrid connected PV solar system
    Falih, Hasan
    Hamed, Ahmed J.
    Khalifa, Abdul Hadi N.
    INTERNATIONAL JOURNAL OF AIR-CONDITIONING AND REFRIGERATION, 2022, 30 (01)