Transport properties of solid electrolytes: Effect of the isotope composition of lithium charge carriers

被引:2
|
作者
Bogomolov, MY
Pantyukhina, MI
Surin, AA
Obrosov, VP
Batalov, NN
Stepanov, AP
Surikov, VT
机构
[1] Russian Acad Sci, Ural Div, Inst High Temp Electrochem, Ekaterinburg 620219, Russia
[2] Russian Acad Sci, Ural Div, Inst Met Phys, Ekaterinburg 620219, Russia
[3] Russian Acad Sci, Ural Div, Inst Solid State Chem, Ekaterinburg 620219, Russia
基金
俄罗斯基础研究基金会;
关键词
isotope; conduction; spin-lattice relaxation; correlation of ionic charge carriers;
D O I
10.1023/B:RUEL.0000046487.55515.a9
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The isotope composition of lithium charge carriers is experimentally found to severely affect transport in solid electrolytes alpha-Li3BO3, Li3N, Li3AlN2, Li5SiN3, Li6MoN4, Li6WN4, and LiCl. The lithium cation conduction of these decreases with increasing content of Li-6 or Li-7 and reaches a minimum at [Li-6] = [Li-7]. The activation energy for conduction increases, reaches a maximum in the same compositions, and then diminishes. Rates of spin-lattice relaxation of Li-7 nuclei in electrolytes are studied by an NMR method at 15-35 MHz. The calculated activation energy for short-range motion (to one interatom distance) of lithium charge carriers in crystal lattices of electrolytes is lower than that for ionic conduction by 2-3 times, which is attributed to two types of correlation (electrostatic, isotopic) of charge carriers.
引用
收藏
页码:1029 / 1034
页数:6
相关论文
共 50 条
  • [21] Design of Polymeric Zwitterionic Solid Electrolytes with Superionic Lithium Transport
    Jones, Seamus D.
    Nguyen, Howie
    Richardson, Peter M.
    Chen, Yan-Qiao
    Wyckoff, Kira E.
    Hawker, Craig J.
    Clement, Raphaele J.
    Fredrickson, Glenn H.
    Segalman, Rachel A.
    ACS CENTRAL SCIENCE, 2022, 8 (02) : 169 - 175
  • [22] Mass transport and charge transfer through an electrified interface between metallic lithium and solid-state electrolytes
    Katzenmeier, Leon
    Goesswein, Manuel
    Carstensen, Leif
    Sterzinger, Johannes
    Ederer, Michael
    Mueller-Buschbaum, Peter
    Gagliardi, Alessio
    Bandarenka, Aliaksandr S.
    COMMUNICATIONS CHEMISTRY, 2023, 6 (01)
  • [23] COMPARATIVE DETERMINATION OF EFFECTIVE TRANSPORT NUMBERS IN SOLID LITHIUM ELECTROLYTES
    FRITZ, HP
    KUHN, A
    JOURNAL OF POWER SOURCES, 1993, 41 (03) : 253 - 261
  • [24] Research Advances in Transport Mechanism of Lithium Ions in Solid Electrolytes
    Fu Zhongheng
    Chen Xiang
    Yao Nan
    Yu Legeng
    Shen Xin
    Zhang Rui
    Zhang Qiang
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2023, 44 (05):
  • [25] Transport of secondary carriers in a solid lithium-ion conductor
    Li, Guanchen
    Monroe, Charles W.
    ELECTROCHIMICA ACTA, 2021, 389
  • [26] TRANSPORT OF EXCESS CHARGE-CARRIERS IN LIQUID AND SOLID HYDROGEN
    LECOMBER, PG
    WILSON, JB
    LOVELAND, RJ
    SOLID STATE COMMUNICATIONS, 1976, 18 (03) : 377 - 380
  • [27] Effect of the 3D Structure and Grain Boundaries on Lithium Transport in Garnet Solid Electrolytes
    Neumann, Anton
    Hamann, Tanner R.
    Danner, Timo
    Hein, Simon
    Becker-Steinberger, Katharina
    Wachsman, Eric
    Latz, Arnulf
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (05): : 4786 - 4804
  • [28] Numerical simulation of transport properties of charge carriers and temperature effect of silicon solar cells
    Zhai, Han
    Zhu, Qingyu
    Wang, Yuanyuan
    Xu, Jianming
    Xie, Huaqing
    AIP ADVANCES, 2023, 13 (04)
  • [29] Structural and transport properties of lithium alumino-phosphate glass solid electrolytes: A molecular dynamics study
    El Kssiri, Othman
    Tahiri, Abdellah
    Faik, Abdessamad
    Filali, Mohammed
    Naji, Mohamed
    COMPUTATIONAL MATERIALS SCIENCE, 2025, 253
  • [30] Surface modification and structure constructing for improving the lithium ion transport properties of PVDF based solid electrolytes
    Jiang, Yujie
    Xu, Chao
    Xu, Kang
    Li, Siyu
    Ni, Jiaxi
    Wang, Yifan
    Liu, Yingjie
    Cai, Jinhai
    Lai, Chunyan
    CHEMICAL ENGINEERING JOURNAL, 2022, 442