Analysis and characterization of super-resolution reconstruction methods

被引:3
|
作者
Battiato, S [1 ]
Gallo, G [1 ]
Mancuso, M [1 ]
Messina, G [1 ]
Stanco, F [1 ]
机构
[1] STMicroelect, I-95121 Catania, Italy
来源
SENSORS AND CAMERA SYSTEMS FOR SCIENTIFIC, INDUSTRIAL, AND DIGITAL PHOTOGRAPHY APPLICATIONS IV | 2003年 / 5017卷
关键词
D O I
10.1117/12.476749
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reconstruction techniques exploit a first building process using Low-resolution (LR) images to obtain a "draft" High Resolution (HR) image and then update the estimated HR by back-projection error reduction. This paper presents different HR draft image construction techniques and shows methods providing the best solution in terms of final perceived/measured quality. The following algorithms have been analysed: a proprietary Resolution Enhancement method (RE-ST); a Locally Adaptive Zooming Algorithm (LAZA); a Smart Interpolation by Anisotropic Diffusion (SIAD); a Directional Adaptive Edge-Interpolation (DAEI); a classical Bicubic interpolation and a Nearest Neighbour algorithm. The resulting HR images are obtained by merging the zoomed LR-pictures using two different strategies: average or median. To improve the corresponding HR images two adaptive error reduction techniques are applied in the last step: auto-iterative and uncertainty-reduction.
引用
收藏
页码:323 / 331
页数:9
相关论文
共 50 条
  • [41] Artifact suppression for multiframe super-resolution reconstruction
    Cheng, Yan
    Fang, Xiangzhong
    Yang, Ruijun
    Journal of Harbin Institute of Technology (New Series), 2007, 14 (SUPPL. 2) : 60 - 63
  • [42] An Improved Super-Resolution Source Reconstruction Method
    Alvarez Lopez, Yuri
    Las-Heras Andres, Fernando
    Rodriguez Pino, Marcos
    Sarkar, Tapan K.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2009, 58 (11) : 3855 - 3866
  • [43] Evaluating super-resolution reconstruction of satellite images
    Benecki, Pawel
    Kawulok, Michal
    Kostrzewa, Daniel
    Skonieczny, Lukasz
    ACTA ASTRONAUTICA, 2018, 153 : 15 - 25
  • [44] Parametric regularization loss in super-resolution reconstruction
    Viriyavisuthisakul, Supatta
    Kaothanthong, Natsuda
    Sanguansat, Parinya
    Le Nguyen, Minh
    Haruechaiyasak, Choochart
    MACHINE VISION AND APPLICATIONS, 2022, 33 (05)
  • [45] Super-resolution image reconstruction using multisensors
    Ching, WK
    Ng, MK
    Sze, KN
    Yau, AC
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (2-3) : 271 - 281
  • [46] Survey of single image super-resolution reconstruction
    Li, Kai
    Yang, Shenghao
    Dong, Runting
    Wang, Xiaoying
    Huang, Jianqiang
    IET IMAGE PROCESSING, 2020, 14 (11) : 2273 - 2290
  • [47] Super-Resolution and Sparse View CT Reconstruction
    Zang, Guangming
    Aly, Mohamed
    Idoughi, Ramzi
    Wonka, Peter
    Heidrich, Wolfgang
    COMPUTER VISION - ECCV 2018, PT XVI, 2018, 11220 : 145 - 161
  • [48] A super-resolution reconstruction algorithm for hyperspectral images
    Zhang, Hongyan
    Zhang, Liangpei
    Shen, Huanfeng
    SIGNAL PROCESSING, 2012, 92 (09) : 2082 - 2096
  • [49] Image acquisition modeling for super-resolution reconstruction
    Gevrekei, M
    Gunturk, BK
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 2157 - 2160
  • [50] Super-resolution reconstruction for terahertz pulsed imaging
    Lin, Xuling
    Zhang, Zhi
    Zhang, Jianbing
    2017 42ND INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2017,