The Averaged Hausdorff Distances in Multi-Objective Optimization: A Review

被引:27
|
作者
Bogoya, Johan M. [1 ]
Vargas, Andres [1 ]
Schutze, Oliver [2 ,3 ]
机构
[1] Pontificia Univ Javeriana, Dept Matemat, Cra 7 40-62, Bogota 111321, DC, Colombia
[2] IPN, CINVESTAV, Comp Sci Dept, Av IPN 2508, Mexico City 07360, DF, Mexico
[3] UAM Cuajimalpa, Mexico City 05348, DF, Mexico
关键词
Averaged Hausdorff distance; evolutionary multi-objective optimization; Pareto compliance; performance indicator; power means; PARTICLE SWARM OPTIMIZATION; SCHEDULING PROBLEM; ALGORITHM; COMPUTATION; APPROXIMATION; CONTINUATION; MANIFOLDS; MOEA/D; BERTH;
D O I
10.3390/math7100894
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A brief but comprehensive review of the averaged Hausdorff distances that have recently been introduced as quality indicators in multi-objective optimization problems (MOPs) is presented. First, we introduce all the necessary preliminaries, definitions, and known properties of these distances in order to provide a stat-of-the-art overview of their behavior from a theoretical point of view. The presentation treats separately the definitions of the (p, q)-distances GD(p,q), IGD(p,q), and Delta(p,q) for finite sets and their generalization for arbitrary measurable sets that covers as an important example the case of continuous sets. Among the presented results, we highlight the rigorous consideration of metric properties of these definitions, including a proof of the triangle inequality for distances between disjoint subsets when p, q >= 1, and the study of the behavior of associated indicators with respect to the notion of compliance to Pareto optimality. Illustration of these results in particular situations are also provided. Finally, we discuss a collection of examples and numerical results obtained for the discrete and continuous incarnations of these distances that allow for an evaluation of their usefulness in concrete situations and for some interesting conclusions at the end, justifying their use and further study.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] MOCSA: A Multi-Objective Crow Search Algorithm for Multi-Objective Optimization
    Nobahari, Hadi
    Bighashdel, Ariyan
    2017 2ND CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC), 2017, : 60 - 65
  • [22] Multi-Objective A* Algorithm for the Multimodal Multi-Objective Path Planning Optimization
    Jin, Bo
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 1704 - 1711
  • [23] Multi-Objective Factored Evolutionary Optimization and the Multi-Objective Knapsack Problem
    Peerlinck, Amy
    Sheppard, John
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [24] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Weian Guo
    Ming Chen
    Lei Wang
    Qidi Wu
    Soft Computing, 2017, 21 : 5883 - 5891
  • [25] Hybrid Multi-Objective Genetic Algorithm for Multi-Objective Optimization Problems
    Zhang, Song
    Wang, Hongfeng
    Yang, Di
    Huang, Min
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1970 - 1974
  • [26] Splitting for Multi-objective Optimization
    Qibin Duan
    Dirk P. Kroese
    Methodology and Computing in Applied Probability, 2018, 20 : 517 - 533
  • [27] Multi-objective Whale Optimization
    Kumawat, Ishwar Ram
    Nanda, Satyasai Jagannath
    Maddila, Ravi Kumar
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 2747 - 2752
  • [28] Evolutionary Multi-Objective Optimization
    Deb, Kalyanmoy
    GECCO-2010 COMPANION PUBLICATION: PROCEEDINGS OF THE 12TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2010, : 2577 - 2602
  • [29] Multi-objective optimization (MO)
    Balling, RJ
    OPTIMAIZATION IN INDUSTRY, 2002, : 337 - 338
  • [30] Splitting for Multi-objective Optimization
    Duan, Qibin
    Kroese, Dirk P.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2018, 20 (02) : 517 - 533