Lagrangian dynamics on an infinite-dimensional torus; a Weak KAM theorem

被引:19
|
作者
Gangbo, W. [2 ]
Tudorascu, A. [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Mass transfer; Wasserstein metric; HAMILTON-JACOBI EQUATIONS; VISCOSITY SOLUTIONS; WASSERSTEIN SPACE; SYSTEMS;
D O I
10.1016/j.aim.2009.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The space L-2(0, 1) has it natural Riemannian structure oil the basis of which we introduce an L-2(0, 1)-infinite-dimensional torus T. For a class of Hamiltonians defined on its cotangent bundle we establish existence of a viscosity solution for the cell problem on T or, equivalently, we prove a Weak KAM theorem. As an application, we obtain existence of absolute action-minimizing solutions of prescribed rotation number for the one-dimensional nonlinear Vlasov system with periodic potential. (C) 2009 Published by Elsevier Inc.
引用
收藏
页码:260 / 292
页数:33
相关论文
共 50 条