Lagrangian dynamics on an infinite-dimensional torus; a Weak KAM theorem

被引:19
|
作者
Gangbo, W. [2 ]
Tudorascu, A. [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Mass transfer; Wasserstein metric; HAMILTON-JACOBI EQUATIONS; VISCOSITY SOLUTIONS; WASSERSTEIN SPACE; SYSTEMS;
D O I
10.1016/j.aim.2009.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The space L-2(0, 1) has it natural Riemannian structure oil the basis of which we introduce an L-2(0, 1)-infinite-dimensional torus T. For a class of Hamiltonians defined on its cotangent bundle we establish existence of a viscosity solution for the cell problem on T or, equivalently, we prove a Weak KAM theorem. As an application, we obtain existence of absolute action-minimizing solutions of prescribed rotation number for the one-dimensional nonlinear Vlasov system with periodic potential. (C) 2009 Published by Elsevier Inc.
引用
收藏
页码:260 / 292
页数:33
相关论文
共 50 条
  • [1] A KAM THEOREM FOR DEGENERATE INFINITE-DIMENSIONAL REVERSIBLE SYSTEMS
    Lou, Zhaowei
    Wu, Youchao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (02)
  • [2] AN INFINITE-DIMENSIONAL WEAK KAM THEORY VIA RANDOM VARIABLES
    Gomes, Diogo
    Nurbekyan, Levon
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (11) : 6167 - 6185
  • [3] Weak-type maximal function estimates on the infinite-dimensional torus
    Kosz, Dariusz
    Rey, Guillermo
    Roncal, Luz
    MATHEMATISCHE ZEITSCHRIFT, 2023, 304 (03)
  • [4] Weak-type maximal function estimates on the infinite-dimensional torus
    Dariusz Kosz
    Guillermo Rey
    Luz Roncal
    Mathematische Zeitschrift, 2023, 304
  • [5] The relation between the size of perturbations and the dimension of tori in an infinite-dimensional KAM theorem of Poschel
    Li, Xuemei
    Liu, Shujuan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 197 (197)
  • [6] Lipschitz functions on the infinite-dimensional torus
    Faifman, Dmitry
    Klartag, Bo'az
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (01)
  • [7] Cone criterion on an infinite-dimensional torus
    Glyzin, S. D.
    Kolesov, A. Yu.
    IZVESTIYA MATHEMATICS, 2024, 88 (06) : 1087 - 1118
  • [8] Maximal operators on the infinite-dimensional torus
    Kosz, Dariusz
    Martinez-Perales, Javier C.
    Paternostro, Victoria
    Rela, Ezequiel
    Roncal, Luz
    MATHEMATISCHE ANNALEN, 2023, 385 (3-4) : 95 - 95
  • [9] Expansive Endomorphisms on the Infinite-Dimensional Torus
    Glyzin, S. D.
    Kolesov, A. Yu.
    Rozov, N. Kh.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2020, 54 (04) : 241 - 256
  • [10] On differentiation of integrals in the infinite-dimensional torus
    Kosz, Dariusz
    STUDIA MATHEMATICA, 2021, 258 (01) : 103 - 119