Double Asymptotic for Random Walks on Hypercubes

被引:0
|
作者
Montegut, Fabien [1 ]
机构
[1] Univ Toulouse, CNRS, UMR5219, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse 9, France
关键词
Limit theorems; Markov chains; Hypercube;
D O I
10.1007/s10959-019-00931-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the sum of the coordinates of a simple random walk on the K-dimensional hypercube and prove a double asymptotic of this process, as both the time parameter n and the space parameter K tend to infinity. Depending on the asymptotic ratio of the two parameters, the rescaled processes converge toward either a "stationary Brownian motion," an Ornstein-Uhlenbeck process or a Gaussian white noise.
引用
收藏
页码:2044 / 2065
页数:22
相关论文
共 50 条
  • [31] ASYMPTOTIC RESULTS FOR MOMENTS OF ABSORPTION OF RANDOM WALKS WITH A BARRIER
    Negadailov, Pavlo
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2008, 79 : 114 - 124
  • [32] CERTAIN ASYMPTOTIC RESULTS FOR RANDOM-WALKS IN A STRIP
    AFANASEVA, LG
    BULINSKAYA, EV
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1985, 29 (04) : 677 - 693
  • [33] ASYMPTOTIC RESULTS ON OCCUPANCY TIMES OF RANDOM-WALKS
    MURTHY, KPN
    VALSAKUMAR, MC
    JOURNAL OF STATISTICAL PHYSICS, 1982, 29 (04) : 773 - 779
  • [34] Martin boundaries and asymptotic behavior of branching random walks
    Bertacchi, Daniela
    Candellero, Elisabetta
    Zucca, Fabio
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [35] Asymptotic entropy of the ranges of random walks on discrete groups
    Xinxing Chen
    Jiansheng Xie
    Minzhi Zhao
    ScienceChina(Mathematics), 2020, 63 (06) : 1153 - 1168
  • [36] Asymptotic behavior of edge-reinforced random walks
    Merkl, Franz
    Rolles, Silke W. W.
    ANNALS OF PROBABILITY, 2007, 35 (01): : 115 - 140
  • [37] Asymptotic entropy of the ranges of random walks on discrete groups
    Xinxing Chen
    Jiansheng Xie
    Minzhi Zhao
    Science China Mathematics, 2020, 63 : 1153 - 1168
  • [38] Continuity of asymptotic characteristics for random walks on hyperbolic groups
    Erschler, A.
    Kaimanovich, V. A.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2013, 47 (02) : 152 - 156
  • [39] ASYMPTOTIC EXPANSIONS FOR A REMARKABLE CLASS OF RANDOM-WALKS
    BOERSMA, J
    WIEGEL, FW
    PHYSICA A, 1983, 122 (1-2): : 334 - 344
  • [40] ASYMPTOTIC EXPANSIONS FOR RANDOM-WALKS WITH NORMAL ERRORS
    KNIGHT, JL
    SATCHELL, SE
    ECONOMETRIC THEORY, 1993, 9 (03) : 363 - 376